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ABSTRACT 
 

Cloud computing environments provide an apparition of infinite computing resources to cloud users 
so that they can increase or decrease resource consumption rate according to their demands. In 
the Cloud, computing resources need to be allocated and scheduled in a way that providers can 
achieve high resource utilization and users can meet their applications’ performance requirements 
with minimum expenditure. Due to these different intentions, there is the need to develop a 
scheduling algorithm to outperform appropriate allocation of tasks on resources. The paper focuses 
on the resource optimization using a threshold-based tournament selection probability for virtual 
machines used in the execution of tasks. The proposed approach was designed to create metatask 
and the proposed algorithm used was Median-Based improved Max-Min algorithm. The 
experimental results showed that the algorithm had better performance in terms of makespan, 
utilization of resources and throughput. The load balance of tasks was also fairly distributed on the 
two datacenters. 
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1. INTRODUCTION 
 
The concept of cloud computing has been 
around since the early 1950s, but the term was 
not coined then. It was addressed as “Time 
sharing systems”. During the period of 1960-
1990, different experts talked about the era of 
cloud computing in various books or quotes. In 
the early 1990s, the telecommunications 
companies began to offer Virtual Private 
Networks (VPNs), instead of dedicated 
connections, which were standard in                        
Quality of Service (QoS) but were comparatively 
cheaper. This move, aided the advent of                         
cloud computing which was introduced                              
around the year 2002 by Amazon. This, 
organization can be considered as one of the 
pioneers in this field, with their Amazon Web 
Services (AWS) and Elastic Compute Cloud 
(EC2) [1]. 
 
A Cloud is a distributed system, which consists of 
a parallel collection of interconnected and 
virtualized computers. These computers are 
provisioned and seen as one or more integrated 
computing resources based on service-level 
agreements acknowledged through discussions 
between the service provider and consumers. 
The computing resources, are virtualized and 
allocated as services from providers to users and 
this can be allocated dynamically upon the 
requirements and preferences of the consumers 
[2]. 
 
In Cloud Computing Environment, Tasks are sent 
to the data center broker (DCB) by the Users. 
The broker is responsible for scheduling tasks on 
Virtual machines (VM) and also stands as an 
intermediary between the Cloud Users and cloud 
Providers. A data center is a virtual Infrastructure 
for encasing resources and it consists of a 
number of Hosts. The proffered tasks are 
scheduled according to the scheduling policies 
used by the DCB. The DCB communicates 
directly with the Cloud controller and                         
tasks are assigned to Virtual machines in the 
Host [3]. 
 
There are different types of Scheduling according 
to different policies for example, Immediate and 
batch scheduling, centralize and distributed 
scheduling. Task scheduling is a process of 
selecting the best resource accessible for tasks 
execution. Task scheduling Algorithms aims at 
minimizing the completion time of tasks and also 

maximizes resource utilization, to meet user 
requirements [4]. 
 
In cloud computing, tasks need to be executed 
by the resources, to achieve high performances, 
optimal completion time, reduce response time 
and effective resources utilization. Premised on 
these aforementioned objectives, there is need to 
develop and propose a scheduling algorithm that 
will be used by task scheduler to appropriately 
allocate tasks to resources.  
 

2. LITERAURE REVIEW 
 
Saraswathi et al. [5] proposed a dynamic 
resource allocation scheme in cloud computing, 
where an effective and dynamic utilization of the 
resources in cloud can be use to balance the 
load and avoid situations like the systems 
running slow. The study focused on allocation of 
VM to the user, based on analyzing the 
characteristics of the job. The limitation of the 
work is that the proposed approach left some 
jobs idle for a long time, due to the time taken to 
create new virtual machines and it was not 
implemented in a real time cloud environment. 
 
In Hamed et al. [6], a hybrid genetic algorithm 
with a knowledge-based operator for solving the 
job shop scheduling problems was proposed. 
The study minimized makespan to solve the 
problem more effectively and an operation-based 
representation was used to enable the 
construction of feasible schedules. The study 
recommended developing new operators that 
further increase the population diversity of the 
algorithm and modeling an operator to measure 
the population diversity. 
 
In Priya and Babub N.K., [7], a resource 
scheduling algorithm with load balancing for 
cloud service provisioning was proposed. The 
objective of the work was to introduce an 
integrated resource scheduling and load 
balancing algorithm for efficient cloud service 
provisioning. The method constructed a fuzzy-
based multidimensional resource scheduling and 
queuing network (F-MRSQN) was used for 
efficient scheduling of resources and optimizing 
the load for each cloud user requests, with the 
efficient evolution of data center. The 
effectiveness of F-MRSQN method was 
estimated by attaining simulation results for 
testing the average success rate and resource 
scheduling efficiency and response time. The 
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results showed that F-MRSQN method provided 
better performance with an improvement of 
average success ratio by 9% and reduced the 
response time by 20% compared to existing 
methods. The work did not investigate privacy-
aware efficient resource scheduling with load 
balancing of intermediate data and information in 
cloud or by taking privacy preserving as a 
metrics with other metrics. 
 
Wang et al., [8] worked on improving task 
scheduling with parallelism awareness in 
heterogeneous computational environments. The 
paper focused on the problem of executing tasks 
with deadline constraints with parallelism 
awareness where the parallel degree of each 
task can be tuned between one or more cores of 
the server assigned during execution. The 
problem was first modelled as an optimization 
problem thereby maximizing the overall utilization 
of servers. A scheduling method with parallelism 
awareness (SPA) was proposed, where each 
core iteratively allocates much resources to task 
with the earliest deadline on a server and thereby 
reducing the number of decision variables. The 
paper introduced a method of calculating the 
start time and the finish time for each task into 
the optimization problem and transforming the 
problem into binary programming. The issue was 
then identified in polynomial time, based on 
existing task scheduling methods. The study 
demonstrated a great performance improvement 
in resource utilization, task violations, finish time, 
and energy efficiency, when executing tasks in a 
heterogeneous computational system using SPA. 
The study was limited by the fact that scheduling 
designs policies with parallelism awareness, to 
improve the efficiency and effectiveness of 
computational systems executing tasks online 
was not considered. 
 
In Krishnaveni and Prakash [9], an execution 
time based sufferage algorithm for static task 
scheduling in cloud was proposed. The research 
focused developing an efficient algorithm named 
Execution Time Based Sufferage Algorithm 
(ETSA) that takes into account, the parameters 
makespan and also the resource utilization in 
scheduling the tasks. The scheduling was vital in 
attaining a high-performance schedule in a 
heterogeneous-computing system. Existing 
scheduling algorithms such as Min-Min, 
Sufferage and Enhanced Min-Min, focused only 
on reducing the makespan but failed to consider 
the other parameters like resource utilization and 
load balance. The work was implemented in Java 

with Eclipse IDE and a set of Expected Time to 
Compute (ETC) matrices was used in the 
proposed algorithm. The ETSA delivers better 
makespan and resource utilization than the other 
existing algorithms.  Proposed ETSA, compares 
the Sufferage Value (SV) of each task with EXSV 
and then take the decision to give out the tasks 
to the resource. It also tries to decrease the 
makespan with a balanced load across the 
resource. It gives better result in terms of 
makespan and resource utilization with a 
balanced load when compared with existing Min-
Min, Enhanced Min-Min, and Sufferage. The 
limitation was that the algorithm was not applied 
in actual cloud computing environment 
(CloudSim) and other parameters such as 
computational cost, storage cost, and deadline of 
the tasks was not considered. 

 
In order to obviate the challenges identified in the 
previous studies, the present research aimed at 
designing a threshold-base tournament selection 
for resource allocation, improve the load balance 
and resource utilization, thereby maximizing the 
throughput.  
 

3. SCHEDULING MODEL 
 

The Cloud manager occasionally collects 
information about resources availability and the 
price for each resource in the database. It 
obtains this information from the different cloud 
providers and acts as a pricing interface between 
them and the users, thereby updating the 
database when new information is available. The 
architecture has two main actors: the broker and 
the user of the cloud. The former adjusts the 
configuration options (available clouds, resource 
types from each cloud, pricing information, etc.) 
before the execution begins; while the latter 
receives information from the broker and 
specifies a new service to deploy among 
available clouds, describing it through a service 
description file. The broker is the one who 
deploys the services among the available cloud 
providers. One of the main components of the 
broker architecture in the cloud is the scheduler, 
which is responsible for independently making 
scheduling decisions based on dynamic pricing 
schemes, dynamic user demands, and different 
resource types performance. The Scheduler is 
responsible for making placement decision and 
can also be configured to work with different 
scheduling policies based on different 
optimization criteria, such as service cost, 
service performance, etc [10].  

 



A data center can manage several hosts which in 
turn manages virtual machines (VMs) during their 
life cycles. The datacenters must have some 
characteristics and this characteristic must be 
basically for the host so that each datacenter 
may have some host. Host is a CloudSim 
component that represents a physical computing 
server in a Cloud: it is assigned a pre
processing capability (expressed in millions of 
instructions per second—MIPS), memory, 
storage, and a provisioning policy for allocating 
processing cores to VMs.  
 
The datacenter broker has some characteristics 
and also have some tasks which is called the 
cloudlet(s) in CloudSim frame work. There may 
be one cloudlet or set of cloudlets which will be 
submitted to the broker and once the broker
the details it then directly interacts with the 
datacenters and assign this cloudlet(s) to some 
VM(s) which runs on the host. The Host 
component implements interfaces that support 
modeling and simulation of both single
multi-core nodes. The host can have some set of 
VM and these VM must also have the hardware 
configurations of the host. In the CloudSim, VM 
allocation policy deals with datacenters, while 
VM Scheduler policy deals with host. All 
processing done inside the CloudSim can either 
be time-shared or space-shared, Maheswaran 
al. [11]. 

 
In Fig. 1, the relationships between the 
datacenter, host, broker and virtual machines are 
shown: 

 
Fig. 1.
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A data center can manage several hosts which in 
turn manages virtual machines (VMs) during their 
life cycles. The datacenters must have some 
characteristics and this characteristic must be 
basically for the host so that each datacenter 

Host is a CloudSim 
component that represents a physical computing 
server in a Cloud: it is assigned a pre-configured 
processing capability (expressed in millions of 

MIPS), memory, 
storage, and a provisioning policy for allocating 

The datacenter broker has some characteristics 
and also have some tasks which is called the 
cloudlet(s) in CloudSim frame work. There may 
be one cloudlet or set of cloudlets which will be 
submitted to the broker and once the broker has 
the details it then directly interacts with the 
datacenters and assign this cloudlet(s) to some 
VM(s) which runs on the host. The Host 
component implements interfaces that support 
modeling and simulation of both single-core and 

ost can have some set of 
VM and these VM must also have the hardware 
configurations of the host. In the CloudSim, VM 
allocation policy deals with datacenters, while 
VM Scheduler policy deals with host. All 
processing done inside the CloudSim can either 

Maheswaran et 

In Fig. 1, the relationships between the 
datacenter, host, broker and virtual machines are 

Fig. 1. shows the data flow of the cloud simulator 
and the activities of the simulator are 
represented in the following equations:
 

��� � = {��}            
 

where UT is user submitted tasks and T is from 
1,2, 3…n 
 

Let B = Broker 
Let D = Datacenters 
Let S= Services needed by users 
 

�ℎ�� �
= � 
∘  �  �. �. � ����������� �� �ℎ� ���������

 
��� � =
� • �      �. �. �ℎ� ���������� �� ��������
 

This research used a space-shared policy which 
was done inside the broker and this decides 
which VM get the tasks. The equations (4, 5 and 
6) were used to show the relationship between 
the host and Virtual machines. 
 

Consider H as a set of hosts in the entire system, 
where  
 

 � = {ℎ�, ℎ�, ℎ�, … , ℎ�}        
 

N is the total number of the hosts and an 
individual host can be denoted as 
denote the host number and range from 1 to 
Similarly, a set of VMs on each Host 
represented as  

 

 

Fig. 1. Cloud Simulator data flow 
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Fig. 1. shows the data flow of the cloud simulator 
and the activities of the simulator are 

n the following equations: 

        (1) 

is user submitted tasks and T is from 

��������� � ��� � (2) 

�������� � ��� �     (3) 

shared policy which 
was done inside the broker and this decides 

equations (4, 5 and 
6) were used to show the relationship between 

as a set of hosts in the entire system, 

        (4) 

is the total number of the hosts and an 
individual host can be denoted as ℎ� , where i 
denote the host number and range from 1 to N. 
Similarly, a set of VMs on each Host ℎ� can be 
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� = {��, ��, ��, … , ��}            (5) 
 
Here, m is the total number of VMs on the 
physical server i. If VM V is deployed on the 
present system, then a solution set denoted by  
 
� = {��,��, ��, … … . , ��}          (6) 
 
and this represents the mapping solution after 
VM V is assigned to each of the Hosts. When the 
V is arranged with the Host H, the result is the 
mapping structure denoted as S.  
 
VM has instructions (I), Size (S), RAM (M), 
Processor (P) and Bandwidth (B) as its 
components. Mathematically, this can be 
represented as follows: 
 
VM =  {I, S, M, P, B}           (7) 
 
∀ �� ∃ �| � = {��, ��, … , ��}          (8) 
 
���� = ���{��, ��, … , ��}         (9a) 
 
���� = ���{��, ��, … , ��}         (9b) 
 
Jobs coming into the queue will be in sequence 
of 10, 30, nth term and this is done by                  
using the arithmetic progression method. In 
mathematics, an arithmetic progression (AP) 
or arithmetic sequence is a sequence of 
numbers such that the difference between the 
consecutive terms is constant. If the initial                
term of an arithmetic progression is �� and the 
common difference of successive members                    
is d, then the nth term of the sequence  ��  is 
given by: 
 
  ��  = ��  + (� − �)�            (10) 

 
where �� is the first term of an arithmetic 
progression which is (10),   ��  is the nth                    
term of an arithmetic progression, d is the 
difference between terms of the arithmetic 
progression but in this equation d is (2*10), n is 

the number of terms in the arithmetic progression 
and m = 1. 
 

4. SCHEDULING ALGORITHM 
 
All tasks in this paper are computational                  
ones, only the Meta task is considered,                       
and the tasks are independent of each other. 
Each Request (Cloudlet) has size. In order to 
efficiently implement the Genetic Algorithm for 
the allocation of VM, this work used a reduction 
method by reducing the request size by the value 
of the highest instruction size from the virtual 
machines (resources) that will be used in the 
processing.  
 
Therefore, if ��  represent the request’s size, the 
reduced form is termed as 
 

� = �������(
��

����
∗ 10)           (11) 

 
����_1 = ��� (�)                                  (12) 
 
Each virtual machine’s Mips is also converted 
into binary form 
 
����_2 = ��� (�/����)                                   (13) 
 

Chromosome is formed by combining request in 
binary form (Gene_1) with binary converted, 
randomly picked virtual machine. 
 

where BIN is procedure for binary conversion. 
����_1  bits are set as the solution (target)                  
which serves as the fitness criterion for                       
final best-fit chromosome. In other words, once 
the genetic algorithm gets same fitness value 
with Gene_1, the iteration is stopped.                       
This research used a datacenter with 4 hosts 
with 10 cloudlets or requests and adopted the 
size ranges from 300 MB to 23000 MB [12]. 
Table 1. shows the configuration of the 
datacenter which consist of virtual machines with 
their configurations as follows: 

 
Table 1. Virtual machine configuration 

 

VM(ID:0) VM(ID:1) VM (ID: 2) VM (ID: 3) 

Mips= 250 Mips =500 Mips =1000 Mips =5000 

Size = 10000MB Size =10000MB Size =10000MB Size =10000MB 

Ram =512MB Ram =512MB Ram =512MB Ram =512MB 

Bandwidth=1000kbps Bandwidth=1000kbps Bandwidth=1000kbps Bandwidth=1000kbps 

Pes number =1 Pes number =1 Pes number =1 Pes number =1 
Source: Neha, 2014. 
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A binary coding with 6-bit strings (S) is used for 
each variable (Gene (G)).  
 
��

� ≤ ��  ≤  ��
�         (14) 

 
��

� is the lower limit which can be represented 
with 6-bit string as 000000 while the upper limit 
gene that could be generated is 111111. The 
combination of the two makes 12-bits of a 
chromosome, � ≤ 10, 10 is the population size of 
the individual to be reproduced or generated. 
This size is used to give enough search space 
for possible solutions (called individuals) and 
move towards the optimal one. 10 individuals are 
generated randomly. For instance, assuming 
population size is 5, and the cloudlet of size 
22626 MB is to be executed, using equations 11 
and 12. The binary form of the cloudlet will be 
101101. An example of the generated population 
is shown in Fig. 2. 
 
In this paper a threshold-based tournament 
selection was used. The selection involves 
randomly picking two individuals from the 
population and staging a tournament to 
determine which one gets selected.  To get a 
parent, samples are made from the population in 
k times (with replacement), where k is the 
tournament size and 5 is assigned to it in 
irrespective of the population size.  
 
The two individuals entered into crossing      
process using selection probability in equation 15 
for the best-fit probability. A floating-point random 
value is generated, if the value is greater or 
equal to the selection probability (in equation 15), 
the fitter candidate is selected, otherwise if the 
value is equal to the second value, that is in 
equation 16 then the weaker candidate is 
chosen. The probability parameter provides a 
convenient mechanism for adjusting crossover 
process. In practise it is always set to be greater 
than 0.5 in order to favour fitter candidates. In 
this paper, the selection probability �  was set to 
be: 
 

� =
∑ ��  ×���

���

��
               (15) 

 
� =  �  × (1 − � )                                       (16) 
 
The selection probability (P): 
 

� = �  

� ��� � ≥ 0.5

� ��� � ≥ �

�                                        (17) 

 

where n is 6 which signifies the 6-bit Strings (S) 
and Sj is the string bit at index j. The tournament 
was extended to involve second individual to 
cater for the case when threshold limit of the first 
best is exceeded and the second value is 
therefore taken to be  � ∗ (1 − �)  [13]. This 
procedure is repeated until all the population 
members have been exhausted. The Best-fit 
value for crossing was 0.7 while 0.2 was taken 
as the second-fit value for crossing. Once the 
random number generated is greater or equal to 
best-fit value, the value at the ith random of 
individual-1 is used to replace the index value of 
the new solution after crossing. If the second fit 
value is the same with the random number 
generated, the value at the ith index of the 
individual- 2 is used to replace the corresponding 
ith index value in the new solution. At each 
tournament crossover, the final solutions are 
displayed. These are then mutated based on 
mutation rate of 0.015. Mutation is an operator 
used in genetic algorithm and its function is to 
maintain diversity from one generation of 
population of genetic algorithm chromosomes to 
the next and this involves altering one or more 
gene values in a chromosome from its initial 
state. According to Paulo Gaspar [14], using 
larger mutation rates prevents the genetic 
algorithm from converging quickly in order to find 
an optimal solution. Using small mutation rate 
leads quickly to good results, 0.015 was 
therefore used. From the result in Fig. 4, the 
target solution is a combination of gene_1 and 
gene_2 with gene_1 (which is the first 6 bits 
string) as the request or job size binary value and 
gene_2 (which is the last 6 bits string) as the 
virtual machine’s binary value is then set to the 
lower limit value (that is, 000000). 
 
5. ALGORITHM FOR META-TASK 

COMPUTATION 
 
The approach used in achieving this, is by 
calculating the median of the average value of 
the completion time of the resources in each 
datacenter used in this paper. The minimum out 
of the two datacenters is calculated and the 
corresponding resource (virtual machine) was 
used to process the meta-task. With this 
approach, it was discovered that there is a close-
form load balancing with respect to the 
makespan metric in the two datacenters.  
 
Median-based meta-task scheduling algorithms  
 

1. Let R represent resource 
2. Let D represent Datacenter 
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3. Let C represent Completion time 
4. Let J represent the Job/Cloudlet processed 
5. ��  is the resource at index � where � =

{1,2,3,4} 
6. ��  is the datacenter at index � where 

� = {1,2} 
7. ��,�  is the completion time of resource at 

index �  in datacenter  � 
8. ��,� is the number of cloudlets processed by 

resource at index �  in datacenter  � 
9. Calculate the Average completion time by a 

resource is given by 
��,�

��,�
 

10.  the median is found from the set of average 
values of the completion time across the 
number of resources used at each 
datacenter by ordering the set from lowest 
to highest and finding the exact middle. 

11. Get the minimum out of the two middle 
numbers from the respective datacenter is 
calculated 

12. Use the resource where this middle number 
(value) can first be found in the 
corresponding datacenter is chosen as the 
best-fit resource that will process the meta-
task. 

 

6. SIMULATION EXPERIMENT AND 
RESULT ANALYSIS 

 

Fig. 3. shows the crossover computation of the 
two individuals at each tournament. The outcome 
of the crossover on the two individuals can either 
affects the New-solution or leave the solution 
intact, (i.e., nothing happens to it). The New-
solution is gotten by merging the 6-bit string of 

cloudlet size and VM but the VM bits will be in 
lower bits (000000) all through. The condition for 
the change on new solution is based on the 
selection probability which was discussed in 
equation (15,16 and 17). The set of Final 
solutions at each tournament will then proceeded 
for mutation. 
 

Fig. 4 shows the mutation computation of the 
final solutions from the crossover in Fig. 3. The 
mutation uses a conditional value of 0.015 
adopted from Paulo Gaspa [14]. This value was 
said to be highest, but in this paper, the condition 
was taken to be lesser or equal to the value 
(0.015). At index 9 for a final solution of 
“011100100000”, mutation occurred with a value 
of 0.006 which is less than 0.015. A random bit-
string is then generated which is either 1 or 0 to 
replace the bit value at that index. In this case 
the bit-string generated are both 0s and are used 
to replace the value at each index. At the end of 
the whole tournament which involves series of 
crossover and mutation, the last value of the 
mutation is then taken as the best solution. It 
should be noted that the solution was the 
merging of gene_1 and gene_2 which in order 
words are cloudlet size and virtual machine 
respectively. The 6-bit string for virtual machine 
is the last 6 bits for the New-solution are 
reconverted to decimal number (base 10). If the 
value at the end of the conversion is zero (0), 
then no virtual machine is found for the 
processing of the cloudlet and therefore such 
cloudlet will be dispatched to meta-task queue 
else the cloudlet is dispatched to the available 
virtual machine for processing. 

 
Samples of Generated Population 

001100100001 
001100100000 
001100100010 
011100100000 
001100101010 

 
Fig. 2. Examples of generated populations 

 
Table 2. Simulation of meta-tasks on VM with minimum completion time 

 

Cloudlet 

ID 

Status Data 

CenterID 

VMID Time CloudletLength Start 

Time 

FinishTime 

0 SUCCESS 2 1 6 3100 5 11 

15 SUCCESS 2 1 5 2350 11 16 

27 SUCCESS 2 1 3 1800 16 19 

39 SUCCESS 2 1 3 1200 19 22 

49 SUCCESS 2 1 2 1000 22 24 
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Fig. 3. Crossover implementation 
 

Mutated Individuals 
Indv for mutation: 011100100001 
Indv for mutation: 011100100001 
Indv for mutation: 011100100001 
Indv for mutation: 011100100001 
Indv for mutation: 011100100001 
Indv for mutation: 011100100001 
Indv for mutation: 011100100001 
Indv for mutation: 001101000010 
Indv for mutation: 001101000010 
Indv for mutation: 001101000010 
Indv for mutation: 001101000010 
Indv for mutation: 001101000010 
Indv for mutation: 001101000010 
Indv for mutation: 001101000010 
Indv for mutation: 011100100000 
Indv for mutation: 011100100000 
Indv for mutation: 011100100000 
Indv for mutation: 011100100000 
Randmutate: 0.006 Set gene index 9 to 0 
Indv for mutation: 011100100000 
Randmutate: 0.01 Set gene index 10 to 0 
Indv for mutation: 011100100000 
Indv for mutation: 011100100000 
Indv for mutation: 001100100000 
 

 
Fig. 4. Mutation implementation 
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Table 3. Calculation of VM with minimum completion time using median-based improved max-
min 

 
VM No of Job 

done in DC 1 
LFT of VM 
in DC 1 

AVG of LFT 
of VM in DC 
1 

No of Job 
done in 
DC 2 

LFT of VM 
in DC 2 

AVG of LFT 
of VM in DC 
2 

0 6 68 11.3 5 35 7.0 
1 1 23 23.0 2 5 2.5 
2 8 46 5.8 6 20 3.3 
3 10 177 17.7 7 39 5.4 

 

 
 

Fig. 5. Completion time of VM in datacenter 1 and 2 using median based-improved max-min 
 
Table 4. Gant chart for scheduled tasks on datacenters 1 and 2 using Median-based Improved 

Max-Min algorithm (MIMM) 
 

 
 

The Graph of completion time of virtual machine 
in datacenter 1and 2 after meta-tasks has been 
executed using Median Based-Improved Max-
Min method is shown in Fig. 5. 
 
Calculations of the desired metrics 
 
The cloudsim 3.0 version has a pre-defined cost 
value for resources used. These are stated as 
follows: 

the cost of using processing in VM resource is 
 3.0 
 
the cost of using memory in VM resource is 0.05 
 
the cost of using storage in VM resource is 0.001 
 
In total the cost is 3.051 and it is uniform across 
the two datacenters 
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i.) �������� ���� =  3.051 ∗ 68 + 3.051 ∗
23 + 3.051 ∗ 46 + 3.051 ∗ 177 

 
= 207.47 + 70.17 + 140.35 + 540.03  
= 958      in data center 1 
 
ii.) �������� ���� =  3.051 ∗ 35 + 3.051 ∗
5 + 3.051 ∗ 20 + 3.051 ∗ 39 
= 106.79 + 15.08 + 61.02 + 118.99  
= 303 in data center 2. 
 

i.) �������� ����������� =
∑  ���� ����� �� �������� � �� ������ ��� ����� 

���

�������� ×�
 %             

 
where n is the number of resources (VM). 
 
For datacenter 1 
 
RU = (68+23+46+177) / (68 * 4) = 314/272 

= 1.15% 
 
For datacenter 2 
 
RU = (35+5+20+39) / (58 *4) = 99/232 
= 0.43% 
 

ii.) Throughput 
 
For median-based improved max-min algorithm 
 
Throughput = 25/68 = 0.37����/����  
 
Therefore, the throughput for datacenter 1= 
0.37jobs/secs. 
 
For datacenter 2 the throughput 
 
= 24/58 = 0.43jobs /secs. 

 
Table 5. Comparison of cost in both datacenters 

 
Datacenter 1 Cost Datacenter 2 Cost 
VM0 207.47 VM0 106.77 
VM1 70.17 VM1 15.08 
VM2 140.35 VM2 61.02 
VM3 540.03 VM3 118.99 

 

 
 

Fig. 6. Graph of against VMs 
 
Comparison with other Algorithms: 
 

Table 6. Comparison of Makespans in Datacenter 1 and 2 
 

Algorithms Datacenters 
DC1 DC2 

IMM 68 24 
ACO 65 20 
MIMM 68 58 
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Fig. 7. The graph of the makespans 
 

 
 

Fig. 8. Graph of throughput against the different allgorithms 
 

Table 7. Comparison of throughput in 
datacenter 1 and 2 

 
Algorithms Datacenter 

DC1 DC2 
IMM 0.37 1.04 
ACO 0.46 1 
MIMM 0.37 0.43 

 
Table 6, shows the makespans of both 
datacenter 1 and 2. IMM depicts the improved 
max-min, ACO depicts the ant colony 
optimization while MIMM is the median-based 
improved max min.  
 
From Fig. 7, it shows that there is fairness in the 
distribution of cloudlets using the median-based 
improved max-min.  

Table 7 shows the comparison of the different 
algorithms used to compare with the Median-
based improved Max-Min algorithm used in this 
paper. 
 
The calculations of the throughput of the different 
algorithms is plotted in the graph above to show 
the total number of jobs completing execution per 
unit time. 

 

7. CONCLUSION 
 
This paper focused on the resource scheduling 
challenges and load balancing that cloud 
computing is facing today. Several resource 
scheduling algorithms were compared with 
respect to the cloud workload as an answer for 
the dynamic scalability of resources. The 
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simulation result showed that the median-based 
improved Max-Min scheduling maximizes the 
makespan with load balancing and guarantees 
the high system availability in system 
performance. The median-based improved Max-
Min algorithm was compared with improved max-
min and ACO. Experimental results show that the 
new algorithm has a better quality of system load 
balancing and the utilization of system resources 
than others. 
 
The experimental results gathered through 
cloudSim 3.0 clearly demonstrated that the 
proposed framework has better performance in 
terms of throughput, distribution and utilization as 
compared to existing scheduling algorithms. The 
results also showed the fairness in the utilization 
of the resources used in the two datacenters and 
the cost of resources decreased with increasing 
number of cloudlets. 
 
For future work, scheduling algorithms that 
inspect the dynamic behavior of the resources 
and algorithms that allow tasks to be preempted 
according to a given priority and dynamically 
adapt the scheduling algorithm will be 
considered. Secured optimal resource allocation 
algorithms and frame work could be explored to 
strengthen the cloud computing paradigm.  
 
Also, devising a strategy of dynamic resource 
allocation which will reduce the overall energy 
consumption rate of the datacenters in the Cloud 
could be considered. 
 
Furthermore, the Vm Scheduler policy and 
cloudlets policy can also be alternated. 
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