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Abstract

In this article, exponentiated U-quadratic distribution (EUq) is proposed by exponentiation
procedure. The quantile function and rth moment of the new model are computed. Estimation
of parameter by the alternative maximum likelihood and estimation based on percentiles are
established and compare their performances through numerical simulations. The results show
that both methods are suitable for the parameter estimation of EUq distribution. A real data
set is used to compare the fit of the two proposed estimation method using Kolmogorov Smirnov
test (KS).
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1 Introduction

Estimation of parameters of probability distributions has been achieved through maximum likelihood,
least square, percentile, Bayesian method among others. For example, recently [1] consider the
estimation of parameters of Kumaraswamy (Kw) distribution by ten different approaches including
maximum likelihood and percentile methods. [2] compare the estimations in the generalized expon-
ential Poisson (GEP) by several methods including maximum-likelihood and percentile. Estimation
of the parameters of Weibull (W) via percentile method was analyzed by [3]. [4] consider a
different method of estimation parameters of generalized exponential (GE) distribution including the
maximum likelihood and percentile methods. [5] discussed the estimation of weighted exponential
(WE) using five methods of parameter estimation including the maximum likelihood method.

This work proposed exponentiated U-quadratic distribution and its basic properties. The estimation
of shape parameter of the exponentiated U-quadratic (EUq) distribution using alternative maximum
likelihood and percentile procedures are established, the methods shown to provide a good estimate,
and improved as the sample size increased. At the end, we compare the two methods by fitting a
real data set.

The cumulative distribution function G(x) of the U-quadratic distribution is given by

G(x) =
α

3
((x− β)3 + (β − a)3), x ∈ [a, b] (1.1)

where a ∈ (−∞,∞), b ∈ (a,∞), α = 12
(b−a)3

and β = a+b
2

. The corresponding pdf of (1.1) is

g(x) = α(x− β)2. (1.2)

Recently, [6] show that the U-quadratic distribution can be considered as a proxy for a transformed
triangular distribution. Moreover, some new extentions of the U-quadratic distribution known as the
transmuted U-quadratic distribution (TUQ) was proposed by [7] and the exponentiated generalized
U-quadratic (EGUq) distribution by [8].

The rest of the paper is organized as follows. In section 2, we define the exponentiated U-
quadratic (EUq) distribution and derive some of its important properties. In section 3, Estimation
of Parameter by the alternative maximum likelihood and percentile methods are discussed. In
section 4, simulation studies and real data illustration are provided. Conclusions in section 5.

2 Exponentiated U-quadratic Distribution

Here, we proposed the Exponentiated U-quadratic distribution by exponentiation procedure. Over
the years, several distributions have been proposed using exponentiation technique, for example,
the exponentiated gumbel (EGu), exponentiated weibull (EW), exponentiated gamma (EG), and
exponenciated prechlet (EFr) distributions were proposed by [9]. Moreover, the generalize exponential
(GE) by [10], exponentiated generalize linear exponential (EGLE) by [11], exponentiated log-logictic
(ELL) by [12], exponenciated weibull (EW) by [13], generalized BurrXII-Poisson(GBXIIP) by [14],
and generalized half-poisson (GHLP) by [15] etc.

The cumulative distribution function F (x) and the probability density function f(x) of exponentiated
U-quadratic distribution (EUq) are obtained respectively by

F (x) = (
α

3
)θ

(
(x− β)3 + (β − a)3

)θ
(2.1)

and
f(x) = θαθ31−θ(x− β)2

(
(x− β)3 + (β − a)3

)θ−1
(2.2)
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The survival function s(x) of exponentiated U-quadratic distribution is given by

s(x) = 1− (
α

3
)θ

(
(x− β)3 + (β − a)3

)θ
and the hazard function h(x) of exponentiated U-quadratic distribution is

h(x) =
θαθ31−θ(x− β)2

(
(x− β)3 + (β − a)3

)θ−1

1− (α
3
)θ ((x− β)3 + (β − a)3)θ

Figure 1 and 2 show the plot of the density function and hazard rate function of the exponentiated
U-quadratic distribution for some values of θ respectively. The quantile function of exponentiated
U-quadratic distribution can be obtained by inverting (2.1) as

Q(p) = 3

√(
3

α

)
p

1
θ − (β − a)3 + β, p ∈ (0, 1). (2.3)

The quantile in (2.3) can be used for random data generation that follow the EUq distribution.

Proposition 2.1. Let U ∼ U(0, 1), where U(0, 1) is a uniform distribution, then

X =
((

3
α

)
u

1
θ − (β − a)3

)1/3

+ β, is a random variable that follow EUq(a, b, θ).

The rth−moment of the EUq is an important measure that can be used to study various features
and characteristics of the EUq such as mean, variance, skewness, kurtosis, moment generating
function etc. The rth−moment of the EUq is computed as follows.

Proposition 2.2. Let X ∼ EUq(a, b, θ), then, for r ∈ N, the rth−moment of X is given by

µr =
∞∑
i=0

3i+2∑
j=0

ψr,j(a, b, θ)
(
br+j+1 − ar+j+1

)
, (2.4)

for |x−β
β−a

| < 1, where ψr,j(a, b, θ) =
(
θ−1
i

)(
3i+2

j

) θαθ31−θ(−β)3i−j+2(β−a)3(θ+i−1)

r+j+1
.

Proof.

µr =

∫ b

a

xrf(x)dx = θαθ31−θ

∫ b

a

xr(x− β)2
(
(x− β)3 + (β − a)3

)θ−1
dx,

for θ real and non integer we can applying the generalized binomial expansion in(
(x− β)3 + (β − a)3

)θ−1
=

∑∞
i=0

(
θ−1
i

)
(x− β)3i(β − a)3(θ+i−1), for |x−β

β−a
| < 1, therefore,

µr = θαθ31−θ
∞∑
i=0

(
θ−1
i

)
(β − a)3(θ+i−1)

∫ b

a

xr(x− β)3i+2dx,

by expanding (x− β)3i+2 =
∑3i+2

j=0

(
3i+2

j

)
xj(−β)3i−j+2, thus,

µr = θαθ31−θ
∞∑
i=0

3i+2∑
j=0

(
θ−1
i

)(
3i+2

j

)
(β − a)3(θ+i−1)(−β)3i−j+2

∫ b

a

xr+jdx,

hence,

µr =
∞∑
i=0

3i+2∑
j=0

ψr,j(a, b, θ)
(
br+j+1 − ar+j+1

)
,

where ψr,j(a, b, θ) =
(
θ−1
i

)(
3i+2

j

) θαθ31−θ(−β)3i−j+2(β−a)3(θ+i−1)

r+j+1
.
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Fig. 1. Plot of the density function of the exponentiated U-quadratic distribution.
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Fig. 2. Plot of the hazard rate function of the exponentiated U-quadratic distribution.

3 Methods of Estimation

In this section, we analyzed the two methods for estimating the parameter θ, of the exponentiated U-
quadratic distribution. Throughout this work we assume that x1, x2, x3, · · · , xn is a random sample
of size n obtaind from the exponentiated U-quadratic distribution with parameter θ unknown. We
let x1:n ≤ x2:n ≤ x3:n ≤ · · · ≤ xn:n denote the associated order statistics from the sample.

3.1 Alternative maximum likelihood method

In this subsection, we consider the alternative maximum likelihood method (AMLE) due to the
irregularity of the usual maximum likelihood estimation (MLE) which occurs at any point corresponding
to the minimum order statistics. The MLEmethod has nice properties of being consistent, asymptotically
efficient under very general conditions. However, in unbounded likelihood problem like estimation
of some continuous distributions the MLE method does not always give satisfactory results see
[16; 17; 18; 19]. In the alternative maximum likelihood method (AMLE) method, in this case, we
set a = x1, and excluded all the data points correspond to x1 from the sample and use the usual
maximum likelihood method. For a random sample x1, x2, x3, · · · , xn of size n the log-likelihood
function of EUq can be written as :

log (L(θ)) = n log θ + nθ logα+ n(1− θ) log 3 + 2

n∑
i=1

log(xi − β)

+ (θ − 1)

n∑
i=1

log
(
(xi − β)3 + (β − a)3

)
(3.1)
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thus, we have

∂ logL(θ)

∂θ
=
n

θ
+ n logα− n log 3 +

n∑
i=1

log
(
(xi − β)3 + (β − a)3

)
(3.2)

hence, the MLE of θ, say θ̂MLE is the solution of (3.2) as

θ̂MLE =
−n∑n

i=1 log
(
α
3
((xi − β)3 + (β − a)3)

) , (3.3)

and we can determine the AMLE of θ, say θ̂AMLE directly from (3.3) by excluded all the data
points correspond to x1 as

θ̂AMLE =
−n∑n

xi ̸=x1
log

(
α
3
((xi − β)3 + (β − a)3)

) , (3.4)

The following describe the irregularity of the usual MLE method, thus, the usual MLE fail to exist
for EUq distribution.

Proposition 3.1. Let x1, x2, ..., xn be an independent and identically random sample of size n form
EUq, let x1 ≤ x2 ≤ x3 ≤ ... ≤ xn, be the order statistic obtain from the sample, then, there always
exists a minimum order statistics for xi = xj or xi ̸= xj, and the log likelihood function in (3.1)
diverges at x1 i.e logL(θ) → −∞|x1 for θ > 1 and logL(θ) → ∞|x1 for θ < 1.

Proof. At xi = x1 = a, (a− β)3 +(β− a)3 = 0, thus, by considering the last term in (3.1), logL(θ)
diveges always and θ̂MLE → 0 for any random sample, hence the usual maximum likelihood method
(MLE) fail to exist.

Corollary 3.1. If τ = {f(x|Θ) : Θ ∈ Ω} is a family of distributions that contains the EUqs as
a subfamily, then the maximum likelihood estimate of the parameter vector Θ based on an i.i.d.
sample of size n ≥ 1 drawn from f(x|Θ) does not exist.

Proof. The fact that Ω contains the EUqs as a subfamily guarantees the existence of Ω∗ ⊂ Ω such
that τ0 = {f(x|Θ) : Θ ∈ Ω∗} is the family of EUqs. Let L(Θ|x) denote the likelihood function for
f(x|Θ), Θ ∈ Ω. The fact that the log likelihood function for the EUq is unbounded guarantees that
logL(Θ|x) is unbounded on Ω∗.

3.2 Estimation based on percentile

The exponentiated Uquadratic distribution has an explicit cumulative distribution function, thus,
the unknown parameter θ can be estimated by equating the sample percentile points with the
population percentile points. For the random sample x1, x2, x3, · · · , xn of size n, let qi be the
estimate of F (x; θ), then, the percentile estimator of θ say θ̂p can be obtained from

q =
[(α

3

) (
(p− β)3 + (β − a)3

)]θ
thus,

θ̂p =
ln(q)

ln
[(

α
3

)
((p− β)3 + (β − a)3)

] (3.5)

Remark 3.1. Notice that, for a random sample (i. i. d) for which there exist p correspond to x1,
then the percentile method fail at p. thus, we avoid using such p.
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4 Simulation Study

We assessed the proposed AMLE and percentile methods by simulation studies. 10,000 samples
are generated of size n = (10, 30, 60, 100, 150) form EUq for different values of a, b and θ. The
estimated values, standard deviation (sd), bias and mean square error (MSE) of the estimators are
computed using R-software. The bias and MSE are computed from

Bias(θ̂) =
1

10000

10000∑
i=1

(θ̂i − θ) and MSE(θ̂) =
1

10000

10000∑
i=1

(θ̂i − θ)2.

In the case of percentile the median is used throughout the simulation i.e p = 0.5. The numerical
values of the resulting simulation are given in Table 1. The resulting simulation shows that, in
the two methods, (i) the standard deviation decreases as the sample size increases, (ii) the bias is
decreasing as sample sizes increases, (iii) In both methods the MSE is decreasing as sample sizes
increases, (iv) the AMLEs are positively bias or negative bias in some cases while (v) the percentile
estimator is all positively biased in this case. Figs. 3 and 4 below show the plot of the bias and
MSE of the resulting simulation respectively.

Table 1. AMLEs, percentle estimates, standard deviations, bias and MSE for various
values of parameter

Sample size Actual values Estimated values Standard deviations Bias deviations Mean square errors

n a b θ θ̂p θ̂amle sd(θp) sd(θamle) Bias(θp) Bias(θamle) MSE(θp) MSE(θamle)

10 -3.0 5.0 0.5 0.5879 0.7940 0.2891 0.2998 0.0879 0.2940 0.0913 0.1763
2.0 7.0 1.0 1.1257 1.4539 0.5472 0.6257 0.1257 0.4540 0.3152 0.5976
-2.0 3.0 1.2 1.3408 1.7196 0.6625 0.7790 0.1408 0.5196 0.4587 0.8767
-10 -5.0 1.8 2.0047 2.4428 1.0286 1.0982 0.2047 0.6428 1.0998 1.6191
0.0 6.0 0.8 0.9137 1.2012 0.4435 0.5027 0.1137 0.4012 0.2096 0.4136
4.0 20 3.0 3.3448 3.4365 1.6854 1.5419 0.3448 0.4365 2.9591 2.5677

30 -3.0 5.0 0.5 0.5258 0.5920 0.1456 0.1119 0.0258 0.0920 0.0219 0.0210
2.0 7.0 1.0 1.0423 1.1123 0.2792 0.2212 0.0423 0.1123 0.0797 0.0615
-2.0 3.0 1.2 1.2423 1.3026 0.3375 0.2696 0.0423 0.1026 0.1157 0.0832
-10 -5.0 1.8 1.8791 1.8510 0.5131 0.4103 0.0791 0.0510 0.2694 0.1709
0.0 6.0 0.8 0.8403 0.9091 0.2263 0.1773 0.0403 0.1091 0.0529 0.0433
4.0 20 3.0 3.1293 2.9304 0.8392 0.7090 0.1293 -0.0696 0.7209 0.5075

60 -3.0 5.0 0.5 0.5129 0.5479 0.0967 0.0715 0.0129 0.0479 0.0095 0.0074
2.0 7.0 1.0 1.0186 1.0536 0.1935 0.1423 0.0186 0.0536 0.0378 0.0231
-2.0 3.0 1.2 1.2254 1.2389 0.2298 0.1692 0.0254 0.0389 0.0535 0.0302
-10 -5.0 1.8 1.8425 1.7610 0.3467 0.2660 0.0425 -0.0390 0.1220 0.0723
0.0 6.0 0.8 0.8193 0.8580 0.1530 0.1139 0.0193 0.0580 0.0238 0.0163
4.0 20 3.0 3.0554 2.7882 0.5698 0.4652 0.0554 -0.2118 0.3277 0.2612

100 -3.0 5.0 0.5 0.5066 0.5314 0.0744 0.0539 0.0067 0.0314 0.0056 0.0039
2.0 7.0 1.0 1.0151 1.0318 0.1460 0.1065 0.0151 0.0318 0.0216 0.0123
-2.0 3.0 1.2 1.2148 1.2196 0.1763 0.1271 0.0148 0.0196 0.0313 0.0165
-10 -5.0 1.8 1.8259 1.7478 0.2637 0.2012 0.0259 -0.0522 0.0702 0.0432
0.0 6.0 0.8 0.8119 0.8368 0.1180 0.0855 0.0119 0.0368 0.0141 0.0087
4.0 20 3.0 3.0472 2.7458 0.4414 0.3559 0.0472 -0.2542 0.1970 0.1913

150 -3.0 5.0 0.5 0.5043 0.5213 0.0595 0.0425 0.0043 0.0213 0.0036 0.0023
2.0 7.0 1.0 1.0095 1.0289 0.1208 0.1046 0.0095 0.0289 0.0147 0.0118
-2.0 3.0 1.2 1.2090 1.2083 0.1418 0.1011 0.0090 0.0083 0.0202 0.0103
-10 -5.0 1.8 1.8161 1.7457 0.2148 0.1999 0.0161 -0.0544 0.0464 0.0167
0.0 6.0 0.8 0.8085 0.8362 0.0951 0.0846 0.0085 0.0362 0.0091 0.0085
4.0 20 3.0 3.0238 2.7456 0.3581 0.2842 0.0238 -0.2544 0.1288 0.1455
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Fig. 3. Plots of the Bias given in Table 1
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Fig. 4. Plots of the MSE given in Table 1
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4.1 Illustration

In this subsection, the goodness of fit test statistics known as Kolmogorov Smirnov (KS) statistics
is used to compare the fit of the EUq through the two estimation methods. The data set is the
lifetimes of fifty 50 devices provided by [20] and recently studied by [21] : 0.1, 0.2, 1.0, 1.0, 1.0, 1.0,
1.0, 2.0, 3.0, 6.0, 7.0, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67,
67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

Table 2. Estimators and the numerical value of the KS and p-value.

θ a b KS p-value
EUqp 1.0030 0.1 86 0.1382 0.2693
EUqAMLE 0.9692 0.1 86 0.1501 0.1897

From Table 2 both the method are good for the estimation of the EUq, though, the percentile
method has the smallest value of the KS, thus percentile perform better in this case. Figure 5
shows the plots of the empirical and estimated cumulative distribution while figure 6 display the
quantile-quantile plot of the EUq estimated by (i) AMLE method and (ii) using percentile method.
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5 Conclusion

We have proposed exponentiated U-quadratic distribution. The density function, survival function,
hazard function, quantile function and rth moment of the new model are presented. Estimation
of the parameter by the alternative maximum likelihood and estimation based on percentiles are
established and compare their performances through numerical simulations studies. According to
the simulation, their performance improved as the sample size increased. A real data set is used to
compare the fit of the two proposed estimation method using Kolmogorov Smirnov test (KS). The
result shows that both methods are suitable for the parameter estimation of EUq distribution. But
percentile method fit the data better with the slight difference in the KS value.
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