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ABSTRACT

A Generalised Euclidean Least Square Approximation (ELS) is derived in this paper. The
Generalised Euclidean Least Square Approximation is derived by generalizing the interpolation
of n arbitrary data set to approximate functions. Existence and uniqueness of the ELS schemes
are shown by establishing the invertibility of the coefficient matrix using condensation method to
reduce the matrix. The method is illustrated for exponential function and the results are compared
to the classical Maclaurin’s series.
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1 INTRODUCTION
In order to deal with some difficult functions,
it is important to reduce such to a linear
combination of some simpler functions. A way to
reduce complicated functions is by approximation
which involves finding a combination of some
elementary functions to a desired degree of
accuracy. Interpolation is another way to
achieve this approximation but it involves fitting
of functions to a given set of data and finding
the best function in a certain class that can be
used to represent the data. Interpolation and
approximation become very significant because
many problems in engineering and science
require fitting a curve for a given set of
experimental data or reduction of some nonlinear
problems for easy manipulation. Some common
methods include the Least-Square, Min-Max,
Taylor series and Interpolatory Approximation
(like the Lagrange and Newton) and many
more. Many approximation methods have
been employed in mathematics but Maclaurin
series stand out in that it produces an
elegant mathematical formula that requires less
computation except for finding the derivatives of
functions. In a study by [1], Euclidean space
with their inner products was used to describe
the methods of least squares adjustment
as orthogonal projections on finite-dimensional
subspaces and it was established that both the
Euclidean and Hilbert space techniques in least
squares adjustment are elegant and powerful
geodetic methods. [2] made an analysis of
euclidean distances and least squares problems
for a given set of vectors, he proved that given
an m × n real matrix A = [a1, ..., an], with
D(A) ≡ diag (δi (A)) (i = 1, · · · , n), δi (A)
is the Euclidean distance from ai to the space
spanned by all other columns of A i.e.

δi(A) = min
xi

∥∥∥ai−
[
a1, . . . , ai−1, ai+1, . . . an

]
xi

∥∥∥
2

=
∥∥∥Axi

∥∥∥
2
.

Application of interpolation with finite element
are considered by [3, 4]. [5] made an
advancement of the momentum interpolation
method on non-staggered grids. [6] developed a
numerical method to quasi-interpolate the forcing
term of differential equations by using radial
basis functions. Least square approximations
are of high significance in regression analysis
for trimming outliers. [7] introduced a new
methodology for identification of the parameters
of the local linear Takagi-Sugeno fuzzy models
using weighted recursive least squares (WRLS).
[8] developed an algorithm for robust leverage
to identify multiple outliers estimate based on

Least Trimmed Euclidean Deviations (LTED). [9]
developed the least square tracking algorithm
which generalizes a suitable way for the standard
LQR formulation on vector spaces to systems
that evolve on the Euclidean group. The
applications of least-squares include robotics,
manipulating parts with complex shapes in
unstructured dynamic environments, planning
end-effect or motions around singularities, writing
on a blackboard, and other motion planning
problems involving kinematic constraints [9].
Other works involving the use of interpolation
in Euclidean space can be found in [10, 11,
12, 13, 14, 15, 16]. [17] made an investigation
of the effects of interpolation error, using two
error methods. [18] derived the exact formulas
for trigonometric sums at different nodes using
Hermite interpolations whose nodes are basically
zeros of Chebyshev polynomials of the first and
second kinds.

In this paper, a generalized scheme for least
square method called Euclidean Least Square
Method (ELS) is derived by generalizing
the interpolation of n arbitrary data set
to approximate functions. Existence and
uniqueness theorems are proved for the derived
ELS schemes by establishing the invertibility
of the coefficient matrix using condensation
method to reduce the matrix. The method is
illustrated for some transcendental functions
and the results are compared to the classical
Maclaurin’s series. These schemes are useful
for obtaining approximation to functions and also
to fit a function for a set of data. The scheme
avoids the difficulty that may arise in finding
higher derivatives of functions.

2 DERIVATION OF THE
ELS FORMULA

In order to derive the ELS schemes, the
Euclidean norm for a given of n + 1 data
points ((xi, yi) , i = 0 (1)n) will be taken and the
least square method will be used to minimize
the residual. It is referred to as “generalized”
because the scheme assumes an arbitrary order
s.
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Definition 2.1. Let x ∈ Rn, then we define the Euclidean norm ([8]) as

∥x∥2 =

(
n∑

i=1

|xi|2
) 1

2

.

Define the Euclidean Least Square (ELS) polynomial Ps(x) of order s as

Ps(x) =

s∑
m=0

amxm

for a given of n + 1 data points ((xi, yi) , i = 0 (1)n). Assume the exact function that produced the
set is y = f(x) and set yi = f (xi) then define the deviation Ri of Ps (x) from y at a point xi and take
the Euclidean norm

Ri = yi −
s∑

m=0

amxm
i and so ∥R∥2 =

n∑
i=0

(
yi −

s∑
m=0

amxm
i

)2

Setting
∂

∥∥R∥∥2

∂aj
= 0 to minimize

∥∥R∥∥2 and rearranging to get

s∑
m=0

(
am

n∑
i=0

xm+j
k

)
=

n∑
i=0

xj
iyi, ⇒

s∑
m=0

αmαj+m = βj , j = 0, 1, 2, · · · , s. (2.1)

where

αr =

n∑
i=0

xr
i , βr =

n∑
i=0

xr
i yi. (2.2)

Putting

α =


α0 α1 α2 · · · αs

α1 α2 α3 · · · αs+1

α2 α3 α4 · · · αs+2

...
...

...
. . .

...
αs αs+1 αs+2 · · · α2s

 , A =


a0

a1

a2

...
as

 , β =


β0

β1

β2

...
βs


We finally have

αA = β ⇒ A = α−1β. (2.3)

Clearly, the coefficient matrix α is a symmetric (s + 1)×(s + 1) matrix and β is an (s + 1) column
vector and a unique solution to equation 2.3 exists if |α| ̸= 0.

2.1 Existence and Uniqueness Theorem

Theorem 2.1. The determinant of α is the the sum of exactly (n+ 1)(s+1) determinants of (s+ 1)×
(s+ 1) matrices

Proof. Define the determinant of α as

|α| =

∣∣∣∣∣∣∣∣∣∣∣

α0 α1 α2 · · · αs

α1 α2 α3 · · · αs+1

α2 α3 α4 · · · αs+2

...
...

...
. . .

...
αs αs+1 αs+2 · · · α2s

∣∣∣∣∣∣∣∣∣∣∣

3



Oke et al.; AJPAS, 1(3): 1-10, 2018; Article no.AJPAS.42676

and on substituting equation (2.2),

|α| =

∣∣∣∣∣∣∣∣∣∣∣

∑n
i=0 x

0
i

∑n
i=0 x

1
i

∑n
i=0 x

2
i · · ·

∑n
i=0 x

s
i∑n

i=0 x
1
i

∑n
i=0 x

2
i

∑n
i=0 x

3
i · · ·

∑n
i=0 x

s+1
i∑n

i=0 x
2
i

∑n
i=0 x

3
i

∑n
i=0 x

4
i · · ·

∑n
i=0 x

s+2
i

...
...

...
. . .

...∑n
i=0 x

s
i

∑n
i=0 x

s+1
i

∑n
i=0 x

s+2
i · · ·

∑n
i=0 x

2s
i

∣∣∣∣∣∣∣∣∣∣∣
and by condensation method gives

|α| =
n∑

k0=0

∣∣∣∣∣∣∣∣∣∣∣

x0
k0

∑n
i=0 x

1
i

∑n
i=0 x

2
i · · ·

∑n
i=0 x

s
i

x1
k0

∑n
i=0 x

2
i

∑n
i=0 x

3
i · · ·

∑n
i=0 x

s+1
i

x2
k0

∑n
i=0 x

3
i

∑n
i=0 x

4
i · · ·

∑n
i=0 x

s+2
i

...
...

...
. . .

...
xs
k0

∑n
i=0 x

s+1
i

∑n
i=0 x

s+2
i · · ·

∑n
i=0 x

2s
i

∣∣∣∣∣∣∣∣∣∣∣
.

and thus,

|α| =
n∑

k0=0

χk0 k0 = 0, 1, · · · , n. ⇒ χk0 =

∣∣∣∣∣∣∣∣∣∣∣

x0
k0

∑n
i=0 x

1
i

∑n
i=0 x

2
i · · ·

∑n
i=0 x

s
i

x1
k0

∑n
i=0 x

2
i

∑n
i=0 x

3
i · · ·

∑n
i=0 x

s+1
i

x2
k0

∑n
i=0 x

3
i

∑n
i=0 x

4
i · · ·

∑n
i=0 x

s+2
i

...
...

...
. . .

...
xs
k0

∑n
i=0 x

s+1
i

∑n
i=0 x

s+2
i · · ·

∑n
i=0 x

2s
i

∣∣∣∣∣∣∣∣∣∣∣
Further condensation of χk0 gives

where

χk1 [k0] =

∣∣∣∣∣∣∣∣∣∣∣

x0
k0

x1
k1

∑n
i=0 x

2
i · · ·

∑n
i=0 x

s
i

x1
k0

x2
k1

∑n
i=0 x

3
i · · ·

∑n
i=0 x

s+1
i

x2
k0

x3
k1

∑n
i=0 x

4
i · · ·

∑n
i=0 x

s+2
i

...
...

...
. . .

...
xs
k0

xs+1
k1

∑n
i=0 x

s+2
i · · ·

∑n
i=0 x

2s
i

∣∣∣∣∣∣∣∣∣∣∣
and therefore

|α| =
n∑

k0=0

n∑
k1=0

χk1 [k0] .

Further condensation of χk1 gives

χk1 =

n∑
k2=0

χk2 [k0, k1] where χk2 [k0, k1] =

∣∣∣∣∣∣∣∣∣∣∣

x0
k0

x1
k1

x2
k2

· · ·
∑n

i=0 x
s
i

x1
k0

x2
k1

x2
k2

· · ·
∑n

i=0 x
s+1
i

x2
k0

x3
k1

x3
k2

· · ·
∑n

i=0 x
s+2
i

...
...

...
. . .

...
xs
k0

xs+1
k1

xs+1
k2

· · ·
∑n

i=0 x
2s
i

∣∣∣∣∣∣∣∣∣∣∣
,
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and

|α| =
n∑

k0=0

n∑
k1=0

n∑
k2=0

χk2 [k0, k1] .

Continuing in this manner and by setting

χks [k0, k1, · · · , ks−1] =

∣∣∣∣∣∣∣∣∣∣∣

x0
k0

x1
k1

x2
k2

· · · xs
ks

x1
k0

x2
k1

x2
k2

· · · xs
ks

x2
k0

x3
k1

x3
k2

· · · xs
ks

...
...

...
. . .

...
xs
k0

xs+1
k1

xs+1
k2

· · · xs
ks

∣∣∣∣∣∣∣∣∣∣∣
,

we have

|α| =
n∑

k0=0

n∑
k1=0

n∑
k2=0

· · ·
n∑

ks=0

χks [k0, k1, k2, · · · , ks−1]

This a sum of an (n+ 1)(s+1) determinants and the proof is complete.

Theorem 2.2. At least

(n+ 1)s+1 − (n+ 1)!

(n− s)!

determinants are zero.

Proof. From theorem 2.1, χks represents the sum of determinant of an (n+ 1)(s+1) matrices that will
be equal to the determinant of α and

χks =

∣∣∣∣∣∣∣∣∣∣∣

x0
k0

x1
k1

x2
k2

· · · xs
ks

x1
k0

x2
k1

x2
k2

· · · xs
ks

x2
k0

x3
k1

x3
k2

· · · xs
ks

...
...

...
. . .

...
xs
k0

xs+1
k1

xs+1
k2

· · · xs
ks

∣∣∣∣∣∣∣∣∣∣∣
= 0.

The determinant of any χki(i = 0, 1, · · · , s) will only be zero if any of the ki’s is repeated. Since there
are (s+ 1) ki’s (i = 0, 1, · · · , s) and each of the ki’s can take exactly one of (n+ 1) values at a time
(i.e. ki = 0, 1, · · · , n) and in order not to have a zero determinant, we avoid repeating the ki’s and the
total number of ways to arrange s+ 1 ki’s from the n+ 1 choices without repeating any ki is exactly
n+1Ps+1. Thus, there are exactly

n+1Ps+1 =
(n+ 1)!

(n− s)!

without repeated columns. Hence at least

(n+ 1)s+1 − (n+ 1)!

(n− s)!
= (n+ 1)s+1 − n+1ps+1 determinants are zero.

Theorem 2.3 (Existence and Uniqueness Theorem). α is invertible.

Proof. By hypothesis, the data (xi, yi) are not repeated and therefore there is no repeated column in
the coefficient matrix α. Consider any two distinct columns p and q of A (say, ApandAq) such that

Ap =
(

αp−1 αp · · · αp+s−1

)T and Aq =
(

αq−1 αq · · · aq+s−1

)T

5
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A linear combination of Ap andAq gives

aAp + bAq = 0 (2.4)

substituting valuesAp andAq into (2.4)we get

a
(

αp−1 αp · · · αp+s−1
)T

+ b
(

αq−1 αq · · · αq+s−1
)T

=
(

0 0 · · · 0
)T(

aαp−1 + bαq−1 aαp + bαq · · · aαp+s−1 + bαq+s−1
)T

=
(

0 0 · · · 0
)T( ∑n

j=1 ax
p−1
j + bx

q−1
j

∑n
j=1 ax

p
j + bx

q
j · · ·

∑n
j=1 ax

p+s−1
j + bx

q+s−1
j

)T
=

(
0 0 · · · 0

)T
and generally, we have

n∑
j=1

axp−1+k
j + bxq−1+k

j = 0 ⇒ axp−1+k
j + bxq−1+k

j = 0. where k = 0, 1, 2, · · · , s

and hence a = b = 0 (since p ̸= q). Thus, any two columns are linearly independent and the matrix
α contain (s+ 1) linearly independent columns (i.e. rank (α) = n) therefore α is invertible. This
invertibility of α verifies that there exists a unique solution of equation 2.3.

3 NUMERICAL ILLUSTRA-
TION OF ELS SCHEME

It is worth mentioning that the Maclaurin series
requires the evaluation of higher derivatives up
to the order of interest which ELS scheme

does not require. In this section, Maclaurin
series is compared with the ELS polynomials for
exponential function. ELS scheme is further used
to forecast power consumption based on the data
obtained from Energy Information Administration
of the United States of America.

Example 3.1. Exponential function exp (x).

The ELS scheme P4 (x) of order 4 is given as

P4(x) =

4∑
m=0

amxm

and the coefficients am is obtained using the scheme 2.3

A = α−1β

where

α =


α0 α1 α2 α3 α4

α1 α2 α3 α4 α5

α2 α3 α4 α5 α6

α3 α4 α5 α6 α7

α4 α5 α6 α7 α8

 , A =


a0

a1

a2

a3

a4

 , β =


β0

β1

β2

β3

β4


and

αr =

n∑
i=0

xr
i ,

βr =

n∑
i=0

xr
i yi.

6
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Choosing the nodes over the compact interval [0, 1] with the step size h = 1
5
= 0.2 as xi = i

5
, i =

0(1)5 gives yi = exi and

αr =

5∑
i=0

(
i

5

)r

= 5−r
5∑

i=0

ir,

βr =

5∑
i=0

(
i

5

)r

exi ,

so that

α0 = 6.0000, α1 = 3.0000, α2 = 2.2000, α3 = 1.8000, α4 = 1.5664,

α5 = 1.4160, α6 = 1.3130, α7 = 1.2394, α8 = 1.1852,

β0 = 10.4792, β1 = 6.4330, β2 = 5.0861, β3 = 4.3566, β4 = 3.9062.

The coefficient matrix α can therefore be written as

α =


α0 α1 α2 α3 α4

α1 α2 α3 α4 α5

α2 α3 α4 α5 α6

α3 α4 α5 α6 α7

α4 α5 α6 α7 α8

 =


6 3 2.2 1.8 1.5664
3 2.2 1.8 1.5664 1.416
2.2 1.8 1.5664 1.416 1.313
1.8 1.5664 1.416 1.313 1.2394

1.5664 1.416 1.313 1.2394 1.1852


and the inverse of the coefficient matrix as

α−1 =


0.9960 −9.0939 26.9097 −31.8287 13.0208
−9.0939 338.597 −1548.03 2302.28 −1085.07
26.9097 −1548.03 7724.61 −12026.2 5832.25
−31.8287 2302.28 −12026.2 19229.8 −9494.36
13.0208 −1085.07 5832.25 −9494.36 4747.18

 .

The constant matrix β is

β =


10.4792
6.4330
5.0861
4.3566
3.9062


By substituting α−1 and β into

A = α−1β

the coefficient vector A is obtained as 
a0

a1

a2

a3

a4

 =


1.0000
0.9988
0.5097
0.1402
0.0695

 .

Hence, the ELS Scheme for exponential function of order 4 is given as

P4 = 1 + 0.9988x+ 0.5097x2 + 0.1402x3 + 0.0695x4.

The first five terms of the Maclaurin series for an exponential function is

exp(x) = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
.

7
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Taking the mean square error of the Maclaurin’s
series of order 4 over the interval [0, 2] gives
0.00426933 whereas the mean square error of
ELS4 over the interval [0, 2] gives 0.00001368.
Figure 1 below reveals that ELS4 agrees more
with the exact graph than the Maclaurin series of
order 4. It is worth mentioning that the choice of

the nodes xi is not unique and thus each time
the nodes are modified, a new polynomial of the
same order is obtained. Table 1 below shows
some other ELS4 for the exponential function
when xi’s are chosen over the interval [0, 1] but
with different step sizes.

Fig. 1. Graph of an Exponential Function.

Table 1. Table showing different 4th order ELS approximation of the exponential function
over[0,1]

Mean Square Error
step size h ELS scheme Macluarin’s series P4(x)

0.05 0.00004262 0.00671770 1 + 0.9974x+ 0.5166x2 + 0.1290x3 + 0.0752x4

0.1 0.00003554 0.00585811 1 + 0.9981x+ 0.5138x2 + 0.1331x3 + 0.0733x4

0.15 0.00002554 0.00503930 1 + 0.9985x+ 0.5115x2 + 0.1368x3 + 0.0714x4

0.2 0.00001368 0.00426933 1 + 0.9988x+ 0.5096x2 + 0.1402x3 + 0.0695x4

0.25 0.000000000 0.00456362 1 + 0.9988x+ 0.5097x2 + 0.1402x3 + 0.0694x4

Example 3.2. Table 2 gives the recorded energy usage from the year 2006 to 2016 in the United
States of America.

Using the data from 2006 to 2015, ELS scheme of order 4 is obtained as

P4(x) = 333.1343 + 24.3969x− 5.5276x2 + 0.8039x3 − 0.0391x4.

8
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This polynomial forecast for the year 2016 as 437.2333 which is pretty close to the exact value 440.1.

Table 2. Africa energy consumption between 2010 and 2016, data was extracted from Energy
Information Administrative EIA https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/

statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf

4 CONCLUSIONS
A general formula for obtaining the Euclidean
Least Square (ELS) scheme of arbitrary order is
developed. The ELS polynomial Ps(x) of order s
is derived as

Ps(x) =

s∑
m=0

amxm

where

and

αr =

n∑
i=0

xr
i , βr =

n∑
i=0

xr
i yi.

The existence and uniqueness of the inverse
of α suffices as a sufficient condition for the
existence and uniqueness of ELS schemes.
The schemes are used to approximate the
exponential function. On comparing the resulting
approximations with the classical Maclaurin’s
series, it is observed that the ELS schemes
provide better approximations to this functions.
It is worth noting that although the inversion of
matrices may be deterrent to development of the
ELS schemes, once the scheme is obtained, it
is more accurate than the classical Maclaurin
series. The scheme also has the advantage of
flexible choice of the nodes in that the nodes can
be adjusted until a desired accuracy is obtained.
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