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ABSTRACT

We propose a new generator of univariate continuous distributions with two extra parameters
called the transmuted odd-Lindley generator which extends the odd Lindely-G family introduced by
Gomes-Silva et al. [1]. Some mathematical properties of the new generator such as, the ordinary
and incomplete moments, generating function, stress strength model, Rényi entropy, probability
weighted moments and order statistics are investigated. Certain characterisations of the proposed
family are estimated. We discuss the maximum likelihood estimates and the observed information

matrix for the model parameters. The potentiality of the new family is illustrated by means of five
applications to real data sets.

Keywords: Characterizations; maximum likelihood;, Odd Lindley-G family; order statistic; stress
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1. INTRODUCTION

In recent years, statisticians have proposed new
generated families of the univariate distributions.
These new generators are obtained by adding
one or more extra shape parameters to the
baseline distribution to obtain more flexibility in
fitting data in different areas such as medical
sciences, economics, finance and environmental
sciences. Some of the well-known generated
families are the following: Marshall-Olkin-G
family by Marshall and Olkin [2], exponentiated-G
by Gupta et al. [3], beta-G by Eugene et al. [4],
Kumaraswamy-G by Cordeiro and de Castro [5],
McDonald-G by Alexander et al. [6], logistic-G by
Torabi and Montazari [7], Lomax-G by Cordeiro
et al. [8], Kumaraswamy Marshall-Olkin-G by
Alizadeh et al. [9], odd-Burr generalised-G by
Alizadeh et al. [10], beta weibull-G by Yousof et
al. [11], generalised odd generalised exponential
family by Alizadeh et al. [12], beta transmuted-H
family by Afify et al. [13], Topp-Leone odd log-
logistic family by Brito et al. [14] and Type |
general exponential class of distributions by
Hamedani et al. [15], among others.

Let A(x&) and H(x&) denote the probability

density function (pdf) and cumulative distribution
function (cdf) of a baseline model with parameter
vector £. Shaw and Buckley [16] introduced the

transmuted-G (T-G) family of distributions with
cdf and pdf given by

F(x;f)=H(x;§)[1+/1—/1H(x;§)], X €E€R, (1)

and

(58 = hxE[1+2-22H(x;8)], xeR 2

respectively, where, MSL is a shape parameter
and ¢ is the vector of parameters for the

baseline cdf H(x;&). The T-G density is a mixture
of the baseline density and the exponentiated-G
(Exp-G) density with power parameter two. If
A=0, then the T-G density reduces to the
baseline density. Gomes-Silva et al. [1] defined
the odd Lindely-G (OL-G) family of distributions
with cdf and pdf given by

o+t G£X;§) exp{—a Q(x;f)}’ a>0, xeR,
1+ a)G(x; ) G(x;¢)

H(x,8)=1-

®)

and
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— —= , XER,
(1+a)G(x;8)’ G(x; 5)} @)

respectively, where, C(%%) and 8(5¢) gre
given cdf and pdf depend on vector parameterg'

The goal of this study is to introduce a new class
of continuous distributions called the transmuted
odd Lindley-G (TOL-G) family in view of the T-G
and OL-G families and study some of its
statistical properties. The cdf and pdf of the TOL-
G family are given, respectively, by

s sy |
e MU+ AS e , XER,
(1+a)G(x)

©®)

Fay=1l1- a+G(x)
’ (1+a)G(x)

and
aG(x)

2 JeTE) = (C))
PP L CI S PRI Y| BCALCICI I P N
(1+a)G(x) (1+a)G(x)
(6)

Henceforth, a random variable with density (6) is
denoted by X~TOL-G(a,A,&). If A=0, then
TOL-G class is reduced to the OL-G family of
distributions. The hazard function 7(x) for the
TOL-G family is given by

ogle {1 o { a+G(x) }“321}
(1+2)G(x) 1+a)G(x)

_ ) _ W P *ER
1-dio| 20 |G Ly, | _@+GW) | 6w
1+a)G(x) (1+a)G(x)
(7)

The motivation of the proposed family is to derive
a new extension of the OL-G family by inducting
two additional shape parameters with an aim of
(1) to produce a skewness for symmetrical
models, (2) to define special models with all
types of hazard rate function, (3) to construct
heavy-tailed distributions for modelling various
real data sets, and (4) to provide consistently
better fits than other generated distributions with
the same underlying model. The rest of this
paper is outlined as follows: In Section 2, linear
representation of the TOL-G family is discussed.
Three special sub-models corresponding to the
TOL-G family are presented in Section 3. In
Section 4, some mathematical properties of the

7(x) =

TOL-G family are investigated. Certain
characterisations of the new family are
presented. in Section 5. In Section 6, the
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maximum likelihood estimates are derived for the conducted in Section 7. In Section 8, five
parameters of the TOL-G family in complete applications for the TOL-G are presented. Some
and censored samples. A simulation study is concluding remarks are given in the last Section.
2. USEFUL EXPANSIONS

In this section, we introduce a useful representation for the TOL-G pdf and cdf.

The pdf given in (6) can be written as:

-a (E(x) 2a (E(x) 2a (j(x)
F)= (1-Da’g(x)e . 22a°g(x)e 99 . 22a%g(x)e W
(1+a)G(x)* (1+a)*G(x)* (1+a)*G(x)’

Using generalised binomial and Taylor expansion in the above equation, we obtain

() (1=’ Pg(0)Gx) | <A (D) 27 Aal P g(x) Gx)
f(x)—;; 11+ a)G(x)'™ +j2=;‘ Jl+a)*Gxy ™

o ()27 A g(x) G(x)
+§; J11+a)*G(x)'™

G (‘j ._3](1—@ g Gy (=) [‘j - 4]2”1 Aa! g(x) G(x)”*
1 1
— J1d+a) - Z

. 2
J,i=0 J.i=0 ./' (1+a)

o (—=7=3) . . .
. (—1>f+'{ g jzf“ﬂaf”g(x)c;(x)f“
l

+ 2
jl+a)

=0
or

S(x)= Z i hj+i+1 (x),
= (®)

where

__ ()M . 1 (773 gt [
”j’i_j!(j+i+1)(l+a)2{[(l Dl +a)+2/ /1]( l_ j+2f /10:( l_ j}

and h;,;,,(x) = (j+i+Dg(x)G(x)*" is the exponentiated-G distribution with power parameter j+i+1.
Integrating (8) with respect to x, we have
F(x)= Z 7iiH i (x),
J5i=0 9)
where, H ;. (x)=G(x)""™".
3. THE SUB-MODELS OF TOL-G

In this section, we introduce three special sub-models of the TOL-G family.



Reyad et al.; AJPAS, 1(3): 1-25, 2018; Article no.AJPAS.43247

3.1 The TOL-Kumaraswamy (TOLKw) Model

Suppose the cdf and pdf of the Kumaraswamy distribution are the following
G(x)=1 —(1 —xb )a L 0<x<1, and g(x)=abx"(1-x")"", 0<x<1, a,b >0, respectively. Then, the cdf
and pdf of TOLKw distribution are given, respectively, by

1={1=2) } . [ ]
2 —(2a+ - ) 1-x" - )
f(x):[ab—aijl(l—xb) ¢ l)e {(1 ) 1-A+24 M e ¢ ) , 0<x<l,

l+a

and
a a 2
as(1-2) ((())} a1 ((())}
F) =4+ )1~ —————|e A ———— e ,0<x<l.
(1+a)(1—xb) (1+a)(1—xb)

The plots of the density and hazard functions are displayed in Fig. 1.
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Fig. 1. Plots of the TOLKw pdf and hrf for selected parameter values
3.2 The TOL-Lomax (TOLLx) Model

Consider the cdf and pdf of the Lomax distribution G(x)=l—(l+ﬂx)_'9, x>0, and
2() =81+ px) %D x>0, 6,4>0, respectively. Then, the cdf and pdf of TOLLx are given,
respectively, by

1—(1+ﬂx)’9:| [1—(1+ﬂx)’1

- - -0 -a -~

1+ px)* e { O Iy Bad G 7 le s I x>0,
(+a)(1+ fx)

op

0!2
l+a

f(X){

and

» w{k(uﬂx)"’} » w{unm)"’} 2
a+(1+Bx) }e e’ L 1{ a+(1+Bx) }e (1+fx)™ >0

=1+ A){1-
Fe=d+4) l:(l+a)(l+ Bx)? (1+a)1+Bx)"?
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The plots of the density and hazard functions are given in Fig. 2.
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Fig. 2. Plots of the TOLLx pdf and hrf for selected parameter values

3.3 The TOL-Frechet (TOLFr) Model

b
The cdf and pdf of the Frechet distribution are G(x):ef(“/x),xzo, and

b
g(x)=babx*(b”)e7(“/x) , x>0, a, b>0, respectively. Then, the cdf and pdf of TOLFr are given,
respectively, by

4 e
2 b o—(b+1) &) ™y 1 ~(a/x)" | T T
f)=| beax e e 1-A+24| 2FC |, e x>0,
(1+a)(1—e‘(“/")bJ (+a)e )
and
) o la)’ ) ol
Py = s | re= | e [l e el
(1+a)(1—e‘(”/‘)"j (1+a)[1—e'(“/")hj

The plots of the density and hazard functions are given in Fig. 3.
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Fig. 3. Plots of the TOLFr pdf and hrf for selected parameter values



4, MATHEMATICAL PROPERTIES

This section deals with some mathematical
properties of the TOL-G family such as: quantile
function, ordinary and incomplete moments,
generating function, Rényi entropy, probability
weighted moment, Lorenz and Bonferroni curves,
stress strength model and order statistics.

4.1 Quantile Function

The quantile function of the TOL-G family, say
Ow)=F"(u) for ue(0,1), =0 and a #0 is
the solution of the non-linear equation

-1
2
H%%WWMPFMJWM4MWH’

_ -l
Ou)=G [H—a 72

where W_,(.) denotes the negative branch of the
Lambert W function.

4.2 Ordinary, Incomplete Moments and
Generating Function

Let X be a random variable with TOL-G
distribution, then the ordinary moment, say s,

is given by

H=EX)= [ X f(x)ds

M= zﬂ;,il//r,jﬂ" (11)

J,i=0

Vo = [ ¥ 800Gy as 19

-0

where, 7 =it and

the probability weighted moment of the baseline
distribution. The nth central moment of the TOL-

G distribution, say 1,, can be obtained from

o = Zm(—ﬂf ) EG

n

o0
_ n NI-T %
= Z p (—,Ul) TiiW¥r j+1-
r=0 j,i=0

(12)

The cumulants of X, denoted by, «,, is
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(13)

o o 2
K =H ) Ky =t —H )

Ky = —3ubu + 1, etc. The rth incomplete

where,

moment of X, denoted by ¢ (¢), is

t

0= [ ¥ f(x)dx

—00

o, (1) = Z ”;,i Ly jvis (14)

7.i=0

t
where, £, ., = [ x'g(0) G d
The moment generating function, say M, (¢), of
the TOL-G distribution is

© - r

[
MO =E@E)= D ¥ o

r,j,i=0""

(15)

Similarly, the probability generating function say,
M, (1), of the TOL-G distribution is given by

. = (Int)" .
M) =E@1") = Z ( ') Tji Vo, jic

r,j,i=0

(16)

4.3 Probability Weighted Moments

The PWM criterion can be constructed for
estimating the model parameters of that
distribution whose inverse form cannot be
expressed in an explicit form. The PWM are
expectation of certain functions of a random
variable and they can be defined for any random
variable whose raw moments exist. The (» + s)th

PWM of X with TOL-G distribution, say M, ,, is
given by
M, =E(XF(x)')= j X"F(x)* f(x)dx,

From (5) and (6), we can obtain

SEFE = > M g0 G,

Jikoh,t,z=0
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where,

Mtz =

(_1)]’+k+é’+z [S}(S+J}(k]ﬂ] (1+A)x—jah+k4‘+2
i\ k¢ Ké—k—h—3]+2,1(1—,1)(k+2)”{é—k—h—4ﬂ

h 1+ o) z (1+a) z
Therefore, we have

Mr,s = Z n/,k,h,/.,z Wr'JHz'

Gk l,z=0 (17)

4.4 Rényi Entropy
The concept of entropy has been applied in different areas such as statistics, queuing theory and
reliability estimation. The Rényi entropy is defined as

Ix(X) = (=) ' og [ f(x)" dx, >0, u#0.
From (6), we obtain

f@Y= D Q8 G,

il h=0

‘ . NO=3u—j—i) . o ‘ .
where, Q,,, = (=) (i) (1+a) “*) {” j[é j{ # } / ’Jz/ A QI (o gy (1= 2
’ J

Consequently, the Rényi entropy for the TOL-G family is given by

LX) =01-w 10%{ z Qi J. g G(x)™" dxj.
i lh=0 el

(18)
4.5 Lorenz and Bonferroni Curves
The Lorenz and Bonferroni curves have been used in different areas such as reliability, economics,

demography, insurance and medicine. The Lorenz L;(x) and Bonferroni B(F(x)) curves are defined
respectively as follows:

1 7. 1 7 L (x)
L =—— |t f@)dt, B(F(x))=—— |t f(¢)dt ==L,
e Em{ 10 (F() F(X)E(x)l faa="2=
Therefore, these quantities for the TOL-G distribution are given below
i i i
Zoﬂj' Lj (19)

Jsi=

Lp(x)= -

N

iV j+i
~

~.

N

and



o0
*
Z Tl jui

J,i=0

F(x) Z ”;,i Wi, j+i

=0

B(F(x))= (20)

4.6 Stress Strength Model

The stress strength model is a common criterion
used in different applications in physics and

engineering such as strength failure and system
collapse. Let X, and X, be two independent
variables with TOL(e,4,%)

random and

where,
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TOL(e,,4,,&) distributions. Then, the stress
strength model is given by

R =Pr(X, <Xl)=jfi(al»/lﬁg)Fz(azJ’z;g)dx'
0

Using (5) and (6), we have

0

@ 2B (. 036 = Y &, g(0G(x) ™,

k,h=0

gen =D AN A+ a) o (o - s+ 3 - p4)s

p=(1=2)1+ )1+ o) {[a{‘(lmz)—aﬂ[

2

_k—3j_aéﬂ[—k—4j}
h h

W 2 —k—-w-3
pz=ZZ(—l)W(k!)‘l(uaz)‘w[ij[s " j(l—ﬂq)ﬂq(aﬁfazw)k’

w=0 s=0

ps = 2414+ ) [(A+a)1+ay)] " (E +E, —E;),

—k-3
E1:[(2al)k<l+a2>—<2al+a2>"}( , ]

E,

k-5
E3:[ala2(2al+a2)k}( A j,

and

k-4
[alk+l(1+az)_(a1 +a,)(2¢ +az)kJ( I ],

2w . . ) s o
g voerT s T

w=0 s=0

Therefore, the stress strength model is given below

X
R= Ek.h>

k,h=0
(21)

where, &, =(k+h+1)" g,

4.7 Order Statistics

Order statistics play an important role in probability and statistics. Let X, <X, ,..<X, be the

ordered sample from a continuous population with pdf f(x) and cdf F(x). The pdf of X,.,, the kth
order statistic is given by



n—k
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g _ w k+w1
S, @ =0 7,”1)2( )[ jf( VF(x)

where, A is the beta function. Substitution from (5) and (6) in the above equation and after some

algebra, we arrive at

n—k 0
kam (x) = Z Z Tj,i,s,h,m hs+m+l °

(22)
w=0 j,i,s,h,m=0
where,
T ~ (_1)w+j+i+s+m/1j(1+l)k+w—j—las+i—h+l [n_kj(k+w_lj[k+w+]_lj
PRSI ma1) 81 Bl n—k+1) (1+0¢)f+l j i
h—s—i-3 i+2) (i+1\(h—s—i—4
x| a(1= )i +1)° STITI 24D [ T
m l+a h m
Furthermore, the »th moment of the ith order statistic for the TOL-G family is given by
n—k 0
(Xk n) = Z T;,i,s,h,m l//r,s+m7 (23)
w=0 j,i,s,h,m=0
where, T/,S,,m _(S+m+1)T/zshm
5. CHARACTERISATIONS RESULTS 5w 0
_G _ a+G(x TG and
This section is devoted to the characterizations 7 G(x){l A {(Ha)G(x)}e }
of the TOL-G distribution in different directions:
(i) based on the ratio of two truncated moments; ()]
(ii) in terms of the hazard function; (iii) in terms of ~ ¢,(x)=¢,(x)e ““ for xeR . The random

the reverse hazard function. Note that (i) can be
employed also when the cdf does not have a
closed form. We would also like to mention that
due to the nature of TOL-G distribution, our
characterizations may be the only possible ones.
We present our characterizations (i)-(iii) in three
subsections.

5.1 Characterizations Based on Two
Truncated Moments
This subsection is devoted to the

characterizations of TOL-G distribution based on
the ratio of two truncated moments. Our first
characterization employs a theorem due to
Glanzel [17], see Theorem 1 of Appendix A. The

result, however, holds also when the interval H
is not closed, since the condition of the Theorem

is on the interior of H.

Proposition 5.1. Let X: Q—»R be a continuous
random variable and let,

variable X has pdf (6) if and only if the function
T defined in Theorem 1 is of the form

N CiC))

I](X)— "G , xeR

Proof. Suppose the random variable X has pdf
(6), then

R

e “6 , xeR,

(1-F) E[ ()| X >x] =%
and
G0

(l—F(x))E[qz(X)|XZxJ: "G , xeR

Further,

—e
2Al+a)

‘]1( )

nx) g (x) =g (x) =——— G(Y) <0 for xeR



Conversely, if 77 is of the above form, then

/A Co L 1 T
) g =gy BN OO xR

and consequently
s(X)=« C_?(x)_l, xeR

Now, according to Theorem 1, X has density
(6).

Corollary 5.1. Let X:QQ—>R be a continuous
random variable and let ¢ (x) be as in
Proposition 5.1. The random variable X has pdf
(6) if and only if there exist functions ¢, and 7

defined in Theorem 1 satisfying the differential
equation

17(x) ¢ (x)
x) ¢ (x)—g,(x)

Corollary 5.2. The general solution of the
differential equation in Corollary 5.1 is

=ag(x) C_?(x)_z, xeR

ae) 6
n=e | ~fag Gae o (ql(x>)‘qz(x>dx+0},

where D is a constant. We like to point out that
one set of functions satisfying the above

_, 8™

g(x){l -A+ ZA{W e
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differential equation is given in Proposition 5.1
with D=0. Clearly, there are other triplets
(@5 921 which satisfy ~ conditions  of
Theorem 1.

5.2 Characterisation in Terms of Hazard
Function

The hazard function, /4., of a twice differentiable
distribution function, F, satisfies the following
first order differential equation

h .
ERCEA

It should be mentioned that for many univariate
continuous distributions, the above equation is
the only differential equation available in terms of
the hazard function. In this subsection we
present non-trivial characterizations of the TOL-
G distribution for two cases: A =0 and A=1 in
terms of the hazard function.

Proposition 5.2. Let X:Q—>R be a
continuous random variable. The random
variable X has pdf (6) if and only if its hazard
function 4, (x) satisfies the following differential

equation:
= o8
a+G(x) } T

xeR.

2 o=
' 7(x d
hF(x)+g"z”7)§2>hF(x)* a_ a4

) dx _ 60 LGN [
6 1[1 [zl ). G<x>][1 e, cm]
(1+a)G(x) 1+ a)G(x)

a+G(x)

Proof. If X has pdf (6), then clearly the above differential equation holds. If the differential equation

holds, then

a+G(x)

)
_ G(x)
g(x){l /1+2/{(1+a)G(x)} }

a(j(x) 2
i e G(X)hF(x) __“ i
dx (I+ ) dx

from which we arrive at the hazard function (7).

6 o Q(X) ﬂzg(x) ’
G(x)’ 1_[1_{0”(’0}. G(x) ][H/l[}e G(x)]
(I+a)G(x) (1+a)G(x)

a+G(x)

5.3 Characterizations in Terms of the Reverse Hazard Function

The reverse hazard function 7. of a twice differentiable distribution function, F, is defined as

10
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re(x) = 1{22 , X € support of F.

In this subsection we present a characterisation of TOL-G distribution in terms of the reverse hazard
function.

Proposition 5.3. Let X * 2R pe 5 continuous random variable. The random variable X has pdf

(6) if and only if its reverse hazard function 7 (%) satisfies the following differential equation:

~ —a@
g(x){lﬂ+22{a+6(x)} G(x)}
gl e, (1+a)G(x)
)+ 28Dy =G0 L  xeR.
G(x ) 1+ ) dx _ G _ _ G)
Gy lf[LGSx)} G(x) 1+A[LGEX)} G
(I+a)G(x) (1+a)G(x)

Proof. Is similar to that of Proposition 5.2.
6. MAXIMUM LIKELIHOOD ESTIMATION

This section discusses the maximum likelihood estimates (MLEs) of the parameters of the TOL-G
family for complete and censored samples.

6.1 Maximum Likelihood Estimation in Complete Samples

Let x;,x,,....x, be the observed values of a random sample from TOL-G family with set of parameters

0= (a,/l,g)T , then the corresponding log-likelihood function is given by

n n _ n Gx.
f=2"‘°g<“)—"log(l+a)+Zlog<g<x~é>)—3Zlog(G<xl-,é>)—aZ[—ég’g]
i=1 i=1 i=1 i>

n = 7ag(xi~§)
> log1- 4424 2FGGRE) J Gosd) L (24)
Zl Og{ ((Ha)G(x[,:) ¢

or ot o
— |are
oa 04" 0&

The components of the score vector V/ = (—,—,

,G00.8)

ot _na+ Z(G(xi,ﬁ)J " Z G, §)G00) 7 (1 @+ Gl ))e 72

= 2 G(7C ,$)

b a(l+a) G(x,6) ) (+a) 1_“2,1(“0(%5)} Gxd)
(1+a)5(x,.8)

(25)
2[0”6’9%5)} Gt 1
% n (1+a)G(xlaé:)

o & - G [
o a2a] @FOERE) |
(+a)G(x;,8)

(26)
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and

o _ [ £'(x,¢) G'(x;,¢) G'(x,,&)
aég ,‘=1[g(xia§)J ZI:( G(xl,g‘)J le{é(xi’é)zJ

G
2 & | G096, @ (1+a+G(x.9)+ a-1G(x. &) e )
+
(el 5 R (P Re e I
I+ a)G(x;,8)

(27)
where, g'(x;,&) =0g(x;,&)/0& and G'(x;,&) =0G(x;,&)/0&.

The MLEs, say @z(&,i,f) of ®=(a,,&) can be obtained by equating the system of nonlinear

equations (25) through (27) to zero and solving them simultaneously. Clearly, if analytical solutions
are not possible we use certain software Package. For the purposes of interval estimation and testing

hypotheses for the vector of parameters © =(a,4,&)” , we derive the (q+3)x(q+3) observed
information matrix J(©)={J,,,} (for w,v=a,1,¢) tobe

Jaa Jal Ja§
JO)=|Jy Ty o
ew o g

whose elements are given in Appendix B.
6.2 Maximum Likelihood Estimation in Censored Samples

If the lifetime of the first 7 failed items x;,x,,...,x, have been observed, then the likelihood function
under type-Il censoring is given by

L(xi,§)=A[Hf(xp§ ] {1=F(x0. )",

i=1

(28)

where, x=(x1,x2,...,x,)T, O=(a,2,&)" and 4 is a constant. Using (5) and (6) in (28), the log-
likelihood function for the TOL-G family in censored samples is given by

/ =2rlog(a)—rlog(l+a)+Zlog(g(xi,§))_3zlog((_;(xi,§))_az[gixiagj
i=1 i=1 i=1 Xis
C a+G(x,8) | o
_ i G(xi,{,‘)
+;log{l A+24 (—(Ha)G(xl,cf)] }

~ G(x;,6) _ G(x(o)»f)
s(n-rylog{1-|1-| 2FGK09) | G ], 5l 2 Twe) |, Glio,8) |, G0
1+ a)G(x(),$) 1+ )G (xp),$)

12
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ol ot ot
The components of the score vector V/ = (— — ) are

oa’ 04" 0
B B 68
ol _r(a+2) z(G(x,',?)J 20a Z’: G(x,,6)G(x;, &)~ (1+a+G(x,.,§)) "o
dr alira) 5(66ud) (rar L gl @G0 ) G
(I+a)G(x;,¢)
_ ?(X(O)"f)
Ca(n-r(1+2) G(x0):E)G(x0), &) (1+@+ G(xp).8))e T
2 P G(x(0)-5) — G(x0)»$) ’
e @609 ) Genar |, 4 @ OG0 ) G

1+ 2)G(x),$) I+ a)G(x),<$)

— o 8Gig)
5 a+G(x,6) . (3. E) _1
o _ ¥ (1+a)G(x,.8)
EY L — GG
i=1 l—A+22 a+G£xi,§) e G(x;,¢)
(I+a)G(x;,¢)

— 70[6()((0,1'5) — _ ("10) &)
2+ G(X0)8) | G || XG0 E) | TG,
I+ a)G(xq).<) I+ a)G(x),¢)

—(n-r) —  Gld) _ _ Glx:9) ) [
1-41- M e IENE) 1+ 2 M e 400
(I+a)G(x), %) I+ a)G(x),$)
(31)

and
o _§ [g'<x,~,-f)j+3 ’ {G'(xi,é)]_a : [G'(xi,é)]
o6 Slex.s) E6x.o) Sl6kx.e
G(.)

21 & G’(x,-,é)é(x,.,g)—s[az(1+a+é(x,.,§))+(za—1)6()6“5)}6aax,,g)

ey 1_“21[0”6@,5)]6 G
(1+a)G(x;,8)

G(x(0),¢)
UL Z G'(30)»E)G(x0), &) [az (1+ &+ Gx). )+ 2 ~1)G(x). 5)} e GG
1+ a) =) o+ G(x &) _ag(xw)vf) o+ G(X £ _ag(x(owf) '
- Gw»6) | G0 4 (w>6) | G
[(1+a)G(x(0),§)] [(1+a)G(x(0),§)]
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The MLEs, say ©=(&,4¢) of ©=(a.4,&) in
censored samples can be obtained by setting
the system of nonlinear equations (30)
through (32) to zero and solving them
simultaneously.

7. SIMULATION STUDY

In this section we evaluate the performance of
the MLEs of the model parameter for the TOLLx
distribution using Monte Carlo simulation varying
the sample size and for selected parameter
values. The simulation is repeated 1000 times
each with sample size n=20,50,150,300 and

500. The parametric values are; first group:

Reyad et al.; AJPAS, 1(3): 1-25, 2018; Article no.AJPAS.43247

second group A1 =1.00, a=5.00, p=1.10,
6 =2.00. The MLEs are obtained by maximising

the log-likelihood function in (24) using optim
routine in R software.

Tables (1) and (2) provide the maximum
likelihood estimates (MLEs), average bias (Bias),
mean square errors (MSE), coverage probability
(CP) for the parameters A, «, g, and 6 under

different sample sizes. From Tables (1) and (2),
we observe that Biases and MSEs decrease as
sample size increases, MLEs tends close to the
original values. The CP of the confidence
intervals are quite close to the nominal level of
95 % so the MLEs and their asymptotic results
can be used for estimating and constructing

A2=0.70, «=250, B=120, 6§=2.00 and for confidence intervals.
Table 1. MLEs, Bias, MSE and CP for first group
n Parameters MLEs Bias MSE CP
2 0.4512 0.0498 0.2400 0.9100
o 3.8171 1.7070 6.1006 0.7388
20 V; 1.6254 0.1151 0.2431 0.9512
) 2.9229 0.4229 0.8144 0.9801
2 0.4900 0.0457 0.2340 0.9207
« 3.1816 1.1136 5.6348 0.8950
50 Y 1.4112 0.1112 0.1993 0.9808
0 2.9253 0.3253 0.7217 0.9990
2 0.5962 0.0312 0.2102 0.9477
o 3.1261 0.8261 2.1361 0.8993
150 Y 1.3830 0.1070 0.1489 0.9604
) 2.3619 0.2381 0.5219 0.9447
2 0.6397 0.0237 0.1867 0.9705
o 2.9230 0.5550 1.0371 0.9210
300 B 1.3924 0.0186 0.0310 0.9509
0 2.1241 0.1245 0.4598 0.8737
) 0.7059 0.0114 0.1001 0.9501
o 2.4888 0.1078 0.5571 0.9409
500 Y 1.2610 0.0105 0.0181 0.9511
0 1.9997 0.1104 0.3403 0.9409
Table 2. MLEs, Bias, MSE and CP for second group
n Parameters MLEs Bias MSE CP
2 0.3410 0.1990 0.5500 0.9925
o 8.1291 2.1291 5.4283 0.8810
20 Y 1.6611 0.9610 2.1992 0.9197
0 4.2878 0.3278 1.9908 0.6500
50 ) 0.4234 0.1266 0.4557 0.8995

14



Reyad et al.; AJPAS, 1(3): 1-25, 2018; Article no.AJPAS.43247

n Parameters MLEs Bias MSE CP
P 7.9731 2.0502 4.0956 0.8798
Y 14015 0.8075 11288 0.9508
0 3.0301 0.2009 1.8106 0.7054
2 0.5191 0.0105 0.3061 0.9765
a 6.0902 1.0112 3.0413 0.9011
150 V; 1.3929 0.5058 0.8697 0.9318
0 2.9769 0.1231 1.7890 0.8491
A 0.7803 0.1191 2.2083 0.9891
P 5.7405 0.7425 3.4347 0.9113
300 Y 1.1831 0.3039 0.5474 0.9204
0 1.9930 0.3161 0.5604 0.8903
] 0.9994 0.0023 11021 0.9501
P 5.1101 0.3607 0.8446 0.9502
500 Y 11142 -0.0090 0.2366 0.9493
0 2.0191 0.0158 0.2033 0.9530

8. APPLICATIONS

In this section, we introduce five application to
real data to show the applicability of the TOL-G
family in complete and censored samples. We
focus on the TOLLx distribution introduced in
Subsection 3.2.

8.1 Complete Data Sets

In this subsection, we provide four application for
TOLLx distribution in complete (uncensored)
data sets. The first data set from Ratan [18] and
it contain 50 observations on burr (in the unit of
millimeter), the diameter is 12 mm and the sheet
thickness is 3.15 mm. The data are given as
follows: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22,
0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08,
0.26, 0.32,0.28, 0.14, 0.16, 0.24, 0.22, 0.12,
0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24,
0.16, 0.32, 0.18, 0.24,0.22, 0.16, 0.12, 0.24,
0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14,
0.26, 0.18, 0.16.

The second data set are the quarterly earnings
per Johnson and Johnson Share (1960 to 1980)
Source R package. The data are: 0.71, 0.63,
0.85, 0.44, 0.61, 0.69, 0.92, 0.55, 0.72, 0.77,
0.92, 0.60, 0.83, 0.80, 1.00, 0.77, 0.92,1.00,1.24,
1.00, 1.16, 1.30, 1.45, 1.25, 1.26, 1.38, 1.86,
1.56, 1.53, 1.59, 1.83, 1.86, 1.53, 2.07, 2.34,
2.25, 2.16, 2.43, 2.70, 2.25, 2.79, 3.42, 3.69,
3.60, 3.60, 4.32, 4.32, 4.05, 4.86, 5.04, 5.04,
4.41, 5.58, 5.85, 6.5, 5.31, 6.03, 6.39, 6.93, 5.85,
6.93, 7.74, 7.83, 6.12, 7.74, 8.91, 8.28, 6.84,
9.54, 10.26, 9.54, 8.73, 11.88, 12.06, 12.15,
8.91, 14.04, 12.96, 14.85.

The third data corresponding to intervals in days
between 109 successive coal-mining disasters in
Great Britain, for the period (1875-1951)
published by Maguire et al. [19]. The sorted data
are given as follows: 1, 4, 4, 7, 11, 13, 15, 15, 17,
18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37,
47, 48, 49, 50, 54, 54, 55, 59, 59, 61, 61, 66, 72,
72, 75, 78, 78, 81, 93, 96, 99, 108, 113, 114,
120, 120, 120, 123, 124, 129, 131, 137, 145,
151, 156, 171, 176, 182, 188, 189, 195, 203,
208, 215, 217, 217, 217, 224, 228, 233, 255,
271, 275, 275, 275, 286, 291, 312, 312, 312,
315, 326, 326, 329, 330, 336, 338, 345, 348,
354, 361, 364, 369, 378, 390, 457, 467, 498,
517, 566, 644, 745, 871, 1312, 1357, 1613,
1630.

The fourth data set consists of 50 observations,
hole diameter and sheet thickness are 9 mm and
2 mm respectively from Ratan [18]. Hole
diameter readings are taken on jobs with respect
to one hole, selected and fixed as per a
predetermined orientation. The data are: 0.06,
0.12,0.14, 0.04,0.14,0.16, 0.08, 0.26, 0.32, 0.22,
0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14,
0.22, 0.16,0.12, 0.24, 0.06 ,0.02, 0.18, 0.22,
0.14, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14,
0.22, 0.14, 0.06, 0.04, 0.16, 0.24, 0.16, 0.32,
0.18, 0.24, 0.22, 0.04, 0.14, 0.26, 0.18,0.16.

The MLEs are computed using Quasi-Newton
Code for Bound Constrained Optimization (L-
BFGS-B) and the log-likelihood function
evaluated. The goodness-of-fit measures,
Anderson-Darling (A*), Cramér—von Mises (W)
are computed. The lower the values of these
criteria, the better the fit. The value for the
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Kolmogorov Smirnov (KS) statistic and its p- Bassiouny et al. [21]) Kumaraswamy Lomax
value are also provided. (KwLx) (Lemonte and Cordeiro [20]), Weibull

o ) Lomax (WLx) (Tahir et al. [22]) The MLEs and
We compare the TOLLx distribution with those of  some statistics of the models for all data sets are

the Lomax (Lx), beta Lomax (BLx) (Lemonte and  presented in Tables (3-10).
Cordeiro [20]), exponentiated Lomax (ELx) (El-

Table 3. The MLEs for the first data set

Distribution Estimates with standard error in parenthesis
y) a 6 B a b
TOLLx 0.0847 0.4622 2.2790 19.1411 - .
(0.9966) (0.3952) (8.6509) (66.8045)
Wix 35.0886 - 9.4534 1.6103 0.0462
(138.6751) (37.7751) (0.2010 (1.0384)
Kwlx 183.1897 - 793.5680 2.1456 925.9396
(79.1424) (231.0023) (0.2676)  (315.5829)
BLx 163.6522 - 24.2602 3.0318 103.7089
(151.2978) (127.8382) (0.5768) (33.2213)
ELx 1207.8458 3.1707 106.2892 - .
(823.9346) (0.7087) (76.5806)
Lx 573.9920 - 93.6344 - .
(237.4615) (38.2760)

Table 4. Some statistics for the models fitted to the first data set

Distribution Statistics
A* W+ L KS P-value
TOLLX 0.4205 0.0716 -57.0434 0.0769 0.7493
WLx 0.5101 0.0798 -56.0772 0.0876 0.7119
KwLx 0.6640 0.1085 -55.7727 0.1127 0.5489
BLx 1.0915 0.1819 -53.3633 0.1541 0.1860
ELx 1.2651 0.2124 -52.2737 0.1652 0.1305
Lx 1.1005 0.1835 -40.6059 0.2806 0.0008

Table 5. The MLEs for the second data set

Distribution Estimates with standard error in parenthesis
i & o F a R
TOLLx 0.2516 3.9758 328.1790 15.0087 . N
(0.3996) (3.1002) (137.3812) (62.5546)
WiLx N 0.0967 . 0.0037 5.7014 2.4333
(0.0026) (0.0006) (0.5065) (3.7434)
Kwlx . 0.9009 . 171.7518 1.1316 63.5329
(0.0484) (104.1595)  (0.1046) (22.4535)
BLx . 301.7541 . 5.3708 1.2320 14.5150
(156.1994) (16.5882)  (0.1869) (52.2568)
ELx . 53.6032 218.4295 1.257178 . .
(20.0232) (84.2147) (0.2034)
Lx N 180.6657 . 862.8725 . N
(137.1960) (478.399)
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Table 6. Some statistics for the models fitted to the second data set

Distribution Statistics

A* W+ L KS P-value

TOLLX 1.4195 0.2156 216.8447 0.0859 0.4299
WLx 1.4843 0.2291 213.7185 0.1183 0.1907
KwLx 1.5016 0.2361 215.0746 0.1129 0.2346
BLx 1.4785 0.2331 214.8074 0.1168 0.2018
ELx 1.4791 0.2337 214.8122 0.1164 0.2048

Lx 1.4746 0.2324 215.7926 0.0968 0.4102

Table 7. The MLEs for the third data set

Distribution Estimates with standard error in parenthesis
i G b F E R
TOLLx -0.4146 0.6940 16.5184 0.5282 . .
(0.9354) (5.9101) (42.1278) (0.1923)
WLx . 0.0778 . 0.0277 5.5496 0.9743
(0.0171) (0.0538) (1.3507) (1.3423)
Kwlx - 0.0484 . 311.6364 1.1596 77.1793
(0.1183) (203.2984) (0.1521)  (214.4590)
BLx . 301.0638 N 0.1107 1.2256 23.0306
(144.6873) (0.7141) (0.1933) (49.4264)
ELx . 2.4852 326.1827 1.2060 . .
(0.7436) (150.7728) (0.1911)
Lx . 4.7407 N 874.6789 . .
(2.4544) (538.2643)

Table 8. Some statistics for the models fitted to the third data set

Distribution Statistics

A* W+ L KS P-value

TOLLx 0.4548 0.0660 698.8196 0.0669 0.7142
WLx 0.5223 0.0762 700.8432 0.0708 0.6449
KwLx 0.5970 0.1020 701.1456 0.0661 0.7284
BLx 0.6960 0.1219 701.6078 0.0749 0.5741
ELx 0.6865 0.1201 701.7234 0.0746 0.5787

Lx 0.4707 0.0703 700.7164 0.0640 0.7628

Table 9. The MLEs for the fourth data set

Distribution Estimates with standard error in parenthesis
i a 0 B a b
TOLLx -0.1718 0.6543 4.2929 32.6701 . .
(0.7065) (0.4913) (1.4339) (13.4579)
WLx N 35.0033 N 8.7573 1.5301 2.3223
(116.6274) (29.4706) (0.1922) (0.9388)
Kwlx . 135.4032 . 293.9294 2.0434 196.8303
(383.1977) (739.0565) (0.26663) (437.5716)
BLx . 294.8861 . 69.2109 2.6689 74.0116
(32.3921) (44.5040) (0.4853) (4.2323)
ELx . 358.5664 31.4201 2.7340 . .
(120.2875) (97.3856) (0.5911)
Lx . 741.8985 . 112.7277 . .
(306.8088) (233.3167)
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Table 10. Some statistics for the models fitted to the forth data set

Distribution Statistics

A* w* L KS P-value

TOLLx 0.6694 0.1067 -59.3151 0.1216 0.4504
WLx 0.8579 0.1468 -58.9369 0.1494 0.2145
KwLx 1.2648 0.2239 -57.0273 0.1742 0.0963
BLx 1.7772 0.3223 -54.6241 0.2097 0.0246
ELx 1.9583 0.3568 -53.6001 0.2176 0.0176

Lx 1.7879 0.3244 -52.4523 0.2859 0.0006

The values in Tables (3-10) show that the
TOLLx model has the smallest values for
A*, W*, KS and largest P-values among all fitted
models (for the four real data sets). So, the
TOLLx model could be selected as the best
model.

The estimated pdfs and cdfs plots are displayed
in Figs. (4), (5), (6) and (7). It is clear from Figs.
(4-7), that the new TOLLx distribution provides
the best fits to the four data sets.

8.2 Censored Data Set

In this subsection, we provide an application for
TOLLx model under type-ll censored data. The
data consist of death times (in weeks) of patients
with cancer of tongue with aneuploidy DNA
profile (Lee and Wang, [23]).

. 7SN — TOLLx
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The MLEs are computed using Quasi-Newton
Code for Bound Constrained Optimization (L-
BFGS-B) and the log-likelihood function
evaluated. The statistics AIC and BIC are
computed and compared the proposed and
competitive models: The lower the values of
these criteria, the better the fit.

We compare the TOLLXx distribution with those of
the Lomax (Lx), beta Lomax (BLx) (Lemonte and
Cordeiro [20]), exponentiated Lomax (ELx) (El-
Bassiouny et al. [21]) Kumaraswamy Lomax
(KwLx) (Lemonte and Cordeiro [20]), Weibull
Lomax (WLx) (Tahir et al. [22]) The MLEs and
some statistics of the models for all data sets are
presented in Tables (11) and (12).
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Fig. 4. Estimated pdfs and cdfs plots of the TOLLx distribution
for data set 1

18



Density

Density

Density

0.05 0.10 0.15 0.20

0.00

0.001 0002 0003 0004 0.005

0.000

— TOLLx

- Kwlx

BLx
ELx

- Kwlx

TOLLx

Blx
Elx

1000

1500

Reyad et al.; AJPAS, 1(3): 1-25, 2018; Article no.AJPAS.43247

cdf
04 08 08 10 12

02

0.0

cdf
02 04 06 08 1.0 12

0.0

— TOLLx

- Kwlx
BLx

— TOLLx
- Kwlx

1 — - Ekx

500

T
1000

T
1500

Fig. 6. Estimated pdfs and cdfs plots of the TOLLXx distribution for data set 3

P
1 /] /<€><\ e
FAeS - -

I VRN Blx
Vi N \\'\ —— Elx
fii-l'" \\ \ :
T N

AT

T T T T T
000 005 010 015 020

025

0.30

035

12

cdf

TOLLx

- Kwlx

000 0.05

T
0.10

015 020

025 030 035

Fig. 7. Estimated pdfs and cdfs plots of the TOLLXx distribution for data set 4

19




Reyad et al.; AJPAS, 1(3):

Empirical and theoretical CDFs

1-25, 2018; Article no.AJPAS.43247

04 08

CDF

0.2
!

00

WLx
- Kwlx
BLx
ELx

TOLLx

[=]

100

200 300

X

400

Fig. 8. Plots of estimated cdfs of the models compared in censored data set

Table 11. The MLEs for the fifth data set

Distribution Estimates with standard error in parenthesis
i a o F R ;
TOLLx 0.4250 0.0.8359 22.7855 0.4610 ) -
(1.1092) (0.5549) (15.3342) (0.1053)
WLx . 0.0685 . 0.4343 2.0572 8.1386
(0.0099) (0.1061) (0.6190) (0.8779)
Kwlx . 0.2868 . 5.9296 2.2666 2.2959
(0.1768) (2.4534) (0.9474) (2.0349)
BLx . 14.5901 . 41448 0.0552 0.2018
(10.5600) (5.8967) (0.1141) (0.1819)
ELx . 0.7443 39.2425 1.2541 . .
(0.3257) (38.6966) (0.4195)
Lx N 0.3471 93.6344 - -
(13.5801) (38.2760)

Table 12. Some statistics for the models fitted to the fifth data set.

Distribution Statistics

L AlIC BIC
TOLLX -181.2062 370.4124 378.2174
WLx -183.7187 375.4373 383.1423
KwLx -183.8169 375.6337 383.4387
BLx -183.9097 375.8194 383.6243
ELx -182.5575 372.1150 376.9687
Lx -185.7654 375.5309 379.4334

The values in Table 12 show that the TOLLx
model has the lowest values for AIC and BIC.
Then, the TOLLXx distribution could be chosen as
the best model within other competitive models.
The estimated cdfs plots are displayed in Fig. 8.
It is clear from Fig. 8, that the TOLLXx distribution
provides a better fit to the censored data as
compared to other models.

9. CONCLUSION

We propose a

new class of continuous

distributions, called the transmuted odd Lindley-
G (TOL-G) family by using the OL-G family as a
parent distribution in the T-G class of
distributions. We study the mathematical
properties of the new family such as ordinary and
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incomplete moments, generating function, Rényi
of entropy, stress strength model, probability
weighted moment and order statistics. Certain
characterisations of the new family are also
introduced. The method of maximum likelihood is
used to estimate the model parameters in
complete and censored samples. Five real data
sets are used to illustrate that some sub-models
corresponding to the TOL-G family can give
better fit than similar models generated by well-
known families.
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APPENDIX A

Theorem 1. Let (Q, F,P) be a given probability space and let H =[a,b] be an interval for some d <b
(a =—o0, b =00 might as well be allowed). Let X:Q — H be a continuous random variable with the
distribution function F and let g, and ¢, be two real functions defined on H such that

E[qz(X)|XZxJ:E[ql(X)|X2x]7](x), xeH,

—1 2
is defined with some real function 7 Assume that 4>92 €C (H).neC(H) 504 F is twice

continuously differentiable and strictly monotone function on the set - Finally, assume that the
equation 1% =42 has no real solution in the interior of £ Then F is uniquely determined by the

functions 91°92 and "> particularly

n'(w)

F = XC—
=], 700y () — 4o (1)

exp(—s(u))du,

n'q
nd—49>

where the function § is a solution of the differential equation s'= and C is the normalization

constant, such that I dF =1.
H

We like to mention that this kind of characterization based on the ratio of truncated moments is stable
in the sense of weak convergence (see Glanzel [24]), in particular, let us assume that there is a

sequence {X,} of random variables with distribution function {F,} such that the functions g,,.¢,,
and 7, (ne N) satisfy the conditions of Theorem 1 and let ¢;, — ¢, ¢,, = ¢, for some continuously
differentiable real functions ¢, and g,. Let, finally, X be a random variable with distribution F. Under
the condition that ¢,,(X) and g,,(X) are uniformly integrable and the family {Fn} is relatively

compact, the sequence X, converges to X in distribution if and only if 77, converges to r, where

) — E[ q,(X)| X 2x]
E[q,(X)|X2x]

This stability theorem makes sure that the convergence of distribution function is reflected by a
corresponding convergence of the function ¢;,q, and 7, respectively. It guarantees, for instance, the

convergence of characterization on the Wald distribution to that of the Levy-Smirrnov distribution if
o —> o,

A further consequence of the stability property of Theorem 1 is the application of this theorem to
special tasks in statistical practice such as the estimation of the parameters of discrete distributions.
For such purpose, the functions ¢,,q,and, specially,  should be as simple as possible. Since the
function friplet is not uniquely determined it is often possible to choose 7 as a linear function.
Therefore, it is worth analyzing some special cases which helps to find new characterizations

reflecting the relationship between individual continuous univariate distributions and appropriate in
other areas of statistics.
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APPENDIX B
The elements of the observed information matrix are given below

_ —n(a” +2Q2a +1))

aa

<~

a2(1 + 0:)2

28608

- a+G(x;,¢) e
“Gn.d) Nl L
(1+ o ZG(x,,g) G(x;,6) e {1 242 A((Ha)(‘;(x,.,g)]e }

@+ ) ecs
— G f - —_l’ o
((1 a)G(xl,§)+a(1+a))[1 /HM((Ha)G(xzaf)Je ]

X

G(x,8)
— _ 2 —a—=
a2 (14a) 26,8 (14 a+ G, é)) e O

2a ¥ = = agod) a+ 6,8 ) s N
Jop = Ty ; G, EG(x,6) 7 (1+a+G(x. &) e "G00 {1 A+ ﬂ(m]e GW@}

G(A ,$) G(x,8)
G'(x;,¢) 2Aa ) a+G(x,¢) | “Gr.o
=- s G S 1-A+4+24| ——2=2—
af Z|:G(X 5) j| (1+ )2 Z (xz é:) (xz é:) e { ((l+a)G(xl,§)] }

(1+a)G(x;,¢)

X

= 060
{25(xi,§)+a(l—<2+a)G(xi,§>)}{1-z+u(MJe Gw}

G |
220+@) GG, (14 @+ G §) G, €0 +a(1+a” + G d))fe T

; _ 607 _ G697
J :—Z 1-2 L&x”é) e é(xx":) 1-4A+24 Lgxl’g) e G(xivg)
M & (1+)G(x;, &) (1+a)G(x;,¢) ’

PRS(C7)

- = 07
Jar( jZG(x,, EG(x,.8) e "G, f’{l A+ /1[—“+G£xf"f) ]e G“‘f@}

(+a)G(x;,¢)

G(x%.6)

[a(a +G(x,9))+G(x,, 5)2}{1 ) (MJ e’“éuf:é) }

(+a)G(x;,¢)

(+a)G(x;,¢)

G 6.0 '
+(/1(1 +a)’! [6(xl. O —a(l+ a)(a +G(x;, 5))}){2(0”—9“5)}3 G(x.8) _ 1}
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n " ' 2 n ~ ~n ’ 2 n ~ n ’ 2
P o) PO R R A C RS }+3 {G(xf,@G(xi,fHG(x,-,é) }_ {G(xl»,;’)G (3,6 +26'(x,,) }
. Z‘{ 20,8 2 Gl 7 "2 Glro)

i=1

-2

21 n IRCERS) 2+ Gl E) IRCERS)
+ D G, &) e T dI- a4 24| = e C0D)
(+a) )5 (1+a)G(x;,&)

- 08
1-A+24| 23G00) | T60
1+ @G 8)
G687 [ (1+ @+ G £)) + Qo =1G(6.8) || G (G- 616" (3.6 +36' (3. 6) ) ~a |

~(1+a)*G'(x,8)°

6o
+{2/1(1 +a) G (5, OG0, e T [ (14 @)+ Gl 6) @+ Gl 8) || @ (14 @+ G, )+ 2a-1G(x,.9) |

where, g"(x,,&) =0°g(x;,£)/0E> and G'(x,,E) = 0°G(x;,&)[0E”.
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