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ABSTRACT 
 

We obtained a solution to radiative heat transfer equations, which describes a multi-layer gray 
semi-transparent medium in terms of an opaque body. It is shown that the thermal disturbance 
between the layers of a medium qualitatively changes its optical properties. We introduced a gray 
body parameter, which allowed us to describe multilayer gray semi-transparent media with low 
thermal conductivity. We propose a method for calculating heat transfer by thermal radiation in a 
gray semi-transparent medium and present the results of radiative heat transfer calculations for 
screen-vacuum and powder insulation materials as examples of such media. 
 

 
Keywords: Semi-transparent medium; radiative heat transfer; generalized blackness coefficient; 

screen-vacuum thermal insulation. 
 

1. INTRODUCTION  
 
The question of radiative heat transfer in a 
semitransparent medium is of interest both for 
fundamental physics and for its applications [1-
3]. As an example of a semi-translucent medium, 

we can give a screen-vacuum insulation, which is 
a multi-layer granular structure [4]. Radiative 
heat transfer in such medium determines its 
heat-insulating properties, to which, at present, 
high demands are made. While investigating  
and analyzing opaque medium,   radiative   heat  
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transfer in them is described in terms of models 
using blackbody coefficients [5]. The existence of 
a gray body parameter for partially transparent 
media (which is similar to the blackness 
coefficient) seems quite natural. Indeed, the 
Kirchhoff’s model, which characterizes the 
radiation of non-transparent media, should have 
an analogue in the contiguous class of semi-
transparent media.  
 
However, in classical monographs on the theory 
of radiative heat transfer (for example, in [5-9]), 
the formalism for calculating such gray body 
parameter of a semi-transparent body is not 
given. The authors of these monographs refer to 
the applicability of Kirchhoff's law for semi-
transparent bodies; however, in monographs, 
different limiting values of the blackness 
coefficient for a transparent medium are 
presented. For example, in Ref. [5], this limit is 
zero due to the absence of radiation and 
absorption of radiation. However, in Ref. [6], it is 
noted that when determining the emissivity, data 
are required that are emitted by the surface of 
opaque bodies into the half-space. Note that the 
radiation of semi-transparent bodies is available 
for observation in a full solid angle; therefore, to 
preserve the Kirchhoff's law, the upper limit of 
the value of the blackness coefficient must be 2.  
 

In applied research, radiative heat transfer in 
opaque optical objects is described using 
blackness coefficients. In semi-transparent 
media, radiative heat transfer is described by 
absorption, transmission, and reflection 
coefficients. As a result of the presence of a 
large number of parameters, it is required to 
solve a bulky system of nonlinear equations, 
when calculating the heat transfer of multilayer 
diathermic media. (The numerical solution of 
such systems is presented, for example, in [10].)  

In this work, a non-uniform diametric medium 
(multilayer plate) is considered under weak 
nonequilibrium conditions, when the 
temperatures of the various outer layers of the 
plate do not differ much. Thermal radiation falls 
on a plate and the plate is a gray body that 
absorbs (and emits) radiation at all frequencies. 
We consider the case of an optically thin 
medium, in which the effects of self-absorption 
can be neglected. On the basis of the Stefan-
Boltzmann and Kirchhoff equations, we 
formulated a model of radiative heat transfer in 
such diathermic environments. We calculated a 
parameter of the gray body,  , which 
characterizes the integral (at all frequencies) 
emissivity of the medium under weak 
nonequilibrium. (The gray body parameter   is 
similar to the blackness coefficient of                        
the gray body, which characterizes the integral 
emissivity of the gray body in equilibrium 
conditions.) The proposed method for calculating 
the radiative heat exchange of multilayer 
diathermic media is macroscopic, and does not 
require a complex analysis of the interaction 
between radiation and matter at the 
microphysical level.  
 

2. RADIATIVE HEAT EXCHANGE WITH 
AN OPAQUE BODY 

 
Let's consider a radiant flow balance on the 
border of a optically thin gray body (Fig. 1). The 
incident heat flow absQ , which is absorbed by the 

surface of the body with absorptance  , is 
returned to the system in the form of thermal 
return radiation radQ , and the flow 

inoutabsrad QQQQQ   is transferred across 

the boundary in the direction of the outward 

normal n


. The return radiation flow outQ  is  

 

QQQQQQQQQQ radradabsinout 








11
)(

11
 

 
 

Fig. 1. A radiation flow balance on the border of a gray body: inoutabsrad QQQQQ   Here, 

radQ  is thermal return radiation, inabs QQ   is an incident heat flow,   is absorptance, 

inabs QQ   is an absorbed radiation flow, outQ  is a return radiation flow 
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For a system of two parallel surfaces 1 and 2 
with an area SSS  21 , the radiative heat 

transfer is given by conditions 
 

 

 1
2

4
2

)2(

2
1

4
1

)1(

inout

inout

QQMTSQ

QQMTSQ








,                  (1) 

 

where 1/1 2,12,1  M , T1 and T2 are 

temperatures at surfaces 1 and 2, respectively. 
 
In (1),   is the Stefan-Boltzmann constant, 

4-28 Wm1067.5  K .  

 
Note that the dependence of the density of 
blackbody radiation on temperature as the fourth 
degree of temperature was formally derived for 
conditions of equilibrium radiation [11-12]. 
However, it is shown that this law can also be 
used for the case of weakly nonequilibrium 
systems (see, for example, [13-14] and 
references in them). This law is widely used to 
study the energy transfer by radiation inside stars 
and in their surface layers, as well as in solving 
various issues relating to the interaction of 
electromagnetic radiation with the matter of 
cosmic objects [15-16]. However, this law cannot 
be applied, for example, to the solar corona, in 
which the conditions of thermodynamic 
equilibrium are strongly violated. This law is also 
unsuitable for determining the emissivity of non-
thermal sources, such as laser sources. In this 
paper, we investigate a weakly nonequilibrium 
system.  
 
Since the flow from the surface 1 to 2 is equal to 

)2()2()1()1(
outininout QQQQQ  , we have 

 

)()(
1

1 4
2

4
1

2121

214
2

4
1

21

TTSTTS
MM

Q 





 





                          (2) 
 
Formula (2) can be obtained by considering the 
processes in which radiation quanta are created/ 
absorbed at the body boundaries 1 and 2 with 
probabilities 1  and 2 , respectively. The 

product 21P  is the heat transfer probability, 

and the value of 

212121 )1)(1(1  R  determines 

the probability of quantum annihilation under 
reflection. Then the ratio RP  is the probability of 

heat transfer taking into account reflections.  
 

Let's deduce the basic equation (1) in another 
way. Let the  -th part of the surface S  be 

blackbody surfaces, and the )1(  -th part be 

the ideal reflecting areas. The total return flow 

outQ  of such a mosaic surface is a superposition 

of the flows of all its elements: 
 

)()1()1( 44 QQTSQTSQ outinout    

 
By regrouping the terms of this expression, we 
obtain the equation (1). Thus, a mosaic, 
consisting of regions with different optical 
properties, behaves on average like a gray body 
(it follows from Huygens' equivalence principle). 
For such a macroscopic description, it is 
necessary to estimate the uniformity of the flow 

inQ  in the region of the conjugate screen. For a 

large number of mosaic elements, the mixture of 
outgoing flows occurs due to a wide spectrum, as 
well as non-directionality and incoherence of 
thermal radiation. In the case when 
inhomogeneity of flow inQ  cannot be neglected, 

it is necessary to consider separately the heat 
exchange in the spatial, angular or spectral 
zones. 
 

In the general case, in the space between 
surfaces with different temperatures, the 
radiation is non-equilibrium and anisotropic. By 
averaging the radiant flows over the solid angle 

4 , we obtain the expression for the brightness 
temperature   as the temperature of a 
homogeneous medium, including a semi-
transparent test medium (for example, a gas), 
which is in equilibrium with the radiation. We 
have  
 

Q
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Substituting the flow Q  from the expression (2) 

into (3), we obtain  
 

212

4
2

4
1

21

12
4

2
4

14 TT

MM

MMTT 
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
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
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      (4) 
 

Formula (4) allows us to verify the correctness of 
the calculation of radiative heat transfer in both 
opaque and diathermic media. We note a 
remarkable property of brightness temperature. 
Using expressions (2), (3), we get the following 
simple expressions:  
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From (5) it follows that the radiative heat 
exchange between the bodies is reduced to a 
separate heat exchange of each of the bodies 
with radiation in the cavity adjacent to this body. 
The parameter SM )21(   has the meaning of 

the thermal resistance attached to the screen, 
and the thermal resistance value is determined 
by the screen parameters. In complex systems, it 
is possible to use the method of equivalent 
replacement of layers and zones by a series-
parallel connection of their thermal resistances.  
 
We now consider the one-dimensional problem 
of radiative transfer by a system of bodies. As an 

example, we define a gray body parameter 1  of 

a single screen, which is equivalent to a group of 

k  identical screens ( ...,2,1k ) with thermal 

emissivity k . 

 
From (5) it follows that the difference in the 

values of    SMQBA  /1244   of the 

brightness temperature of radiation on different 
sides (A and B) of the screen is determined by 
the value of the through flow Q  (the flow Q  is 

common to all layers). Thus, we have the relation 

 1/)21(12 1  kkkM  . Then 
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
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.          (6) 

 
Inversion (6) allows us to solve the inverse 
problem of equivalent replacement of a single 

screen with a grayness parameter 1  by a group 

of identical screens: 

 

2)1( 1

1
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



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k
k ,    1lim 


k

k

 .             (7) 

 

The grayness parameter 1 has the meaning of 

thermal emissivity in the problem under 
consideration. (We consider the body under 
weak non equilibrium conditions.) The parameter 
  is similar to the blackness coefficient of the 
gray body, which characterizes the integral 

emissivity of the gray body in equilibrium 
conditions.  
 
Thus, an increase in the number of layers 
(screens) approximates the optical 
characteristics of the group to the properties of 
an ideal mirror with a high degree of accuracy. 
However, inverse operation has a limitation. The 
group, which replaces the screen with a gray 

body parameter 1 , may contain no more than 

1/2 1  k  layers, since 1 .  In particular, a 

completely black screen cannot be replaced by 
anything else.  
 

3. RADIATIVE TRANSFER IN 
DIATHERMIC BODIES  

 
Consider the radiative transfer in a flat diathermic 
layer. (Diathermy is a property of partial 
transmission of thermal radiation. In qualitative 
descriptions, the term diathermy is synonymous 
with semi-transparent. In quantitative 
calculations, the term diathermy is used as the 
equivalent of the transmittance.) Following the 
example of the previous section, we construct 
the equivalent of a semi-transparent body with 
optical characteristics given by the absorptance 
A , reflectance R , and transmittance D . (

1 DRA ) Let's fill the surface of the 
equivalent screen with a mosaic of transparent 
and opaque fragments with the ratio of areas of 

)1/( DD . To preserve the flux values absQ  and 

reflQ , we choose the coefficient *A  and *R  of 

the solid part of the surface as 
 

)1/(** DAA  , )1/(* DRR  , 

1**  RA                (8) 
 
Let's choose a positive direction along the 
outward normal vector, and write the expression 

for outgoing flows 
(A)
outQ  and 

(B)
outQ  in the form of 

superpositions of return flows of opaque areas 
and transit flows of transparent elements: 
 

(A)*4(B)

(B)*4(A)

)()1(

)()1(

inout

inout

QDQMTSDQ

QDQMTSDQ








,        (9) 

 

where   ARARM ///1 *****   . 

 

Substitution of QQQ outin  (A)(A)  and 

QQQ outin  (B)(B)  in (9) allows us to obtain two 
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independent equations for the flows emitted from 
each side of the screen: 
 

])())(1[())(1(

])())(1[())(1(

(B)*4*4(B)

(A)*4*4(A)

QQQDQMSTDDQMSTDQ

QQQDQMSTDDQMSTDQ

outout

outout









                                                             (10) 
 
For a transparent body ( 1D ), relations (10) 
become identities. In other cases, the equations 
are reduced to the form of the type (1): 
 

QMTSQ

QMTSQ

out

out
~

~

4(B)

4(A)








,                     (11) 

 
where 

D

DMD
M






1

)1(~ *

.              (12) 

 

So, we have described the semi-transparent 
screen as an opaque body. In deriving the 
formulas, we used only the Huygens’s principle 
and the classical formulation of the Kirchhoff’s 
law on the equality of absorptivity and emissivity 
for an opaque body. The identity of the 
descriptions (1) and (11) allows us to define a 

gray body parameter ~  and coefficient ~1
~

R  
for an diathermic medium. The definition is based 
on the characteristic features of an opaque body, 
which is thermophysical equivalent of diathermic 
body.  

By analogy with (7), we obtain the required 
expressions for the gray body parameter:  
 

)21(2

)1(
),(~

2DADD

DA
DA




 ,        (13) 

  
Fig. 2 shows series of dependencies for the gray 
body parameters ),(~ DA .  

 

As an illustration, we present the calculations of 
radiation heat transfer in a sample of screen-
vacuum thermal insulation, which is located 
between the massive plates of the heater and the 
refrigerator. The calculation was carried out for a 
sample consisting of 19 isolated semi-
transparent screens with a blackness coefficient 

of 04.0*   (Fig. 3). 
 

For the temperature 573K1 T  at the cold 

boundary and the heat flow density 2 W/m1Q , 

we determine the temperature of the 
intermediate layers and temperature 2T  at the 

hot boundaries, as well as the radiant 

temperature   for the adjacent layers. We used 

the temperatures 1T  and 2T  to calculate the 

control value of the brightness temperature *  in 
the model without screen-vacuum thermal 
insulation. Fig. 3 shows the results of our 
calculations in the form of bar charts.

 
 

 
Fig. 2. Dependencies of the gray body parameters ),(~ DA  on absorptance A  for different 

values of transmittance D  (the values of transmittance D are shown below the curve) 
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Fig. 3. The results of the heat transfer calculations in samples of screen-vacuum thermal 

insulation. The top line shows the parameters of the borders ( 21,  ) and layers ( D,* ); the 

solid red line is the layer temperature, the blue line is the brightness temperature  ; a line with 
a circle on top is results of the heat transfer calculations in a model without screen-vacuum 

thermal insulation 
 
The increase in transparency of the screen-
vacuum thermal insulation in the range of 

99.0...0D  (Fig. 3, a - d) leads to a decrease in 

the temperature difference 21 TT  . The 

diathermic layers have temperatures close to the 

check value * , and the diathermic layers distort 
heat flows less and less, gradually turning into 

test bodies. As the value of 1  of the left border 
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increases from 04.01   to 1 (Fig. 3, d - g), the 

position of the brightness temperature *  is 
shifted. The diathermic group repeats the same 
characteristic changes.  
 
Thus, the representation of a system of bodies 
by a chain of equivalent radiation resistances 
correctly describes characteristic features of 
radiative heat transfer in media, which consists of 
alternating heat-conducting and heat-insulating 
layers. Well-studied examples of such composite 
materials are screen-vacuum and powder 
thermal insulation [17]. We believe that the 
approach presented here allows us to extend the 
application area of classical theory to the class of 
semi-transparent media.  
 
In the considered problem of the equivalence of 
layers, the introduction of the gray body 
parameter removes the restriction on the number 
of layers, and allows us to proceed to the 
description of continuous media with low thermal 
conductivity. By substituting (13) into (5), we 
obtained a difference in brightness temperature 

44
BA    at the boundaries of the layer for the 

sum of radiation resistances with an unlimited 
increase in their number:  
 

Q
D

D

S

M
Q

S

M
BA














1

1121
~

244


     (14) 

 
Note that in order to substantiate the proposed 
approach, it is necessary to investigate heat 
exchange processes in heat-conducting media, 
since the conclusions of Sections 2 and 3 
implicitly imply the fulfillment of an isothermal 
condition TTT BA   during the measurement of 

optical parameters.  
 

4. KIRCHHOFF'S LAW FOR SEMI-
TRANSPARENT MEDIA  

 
By proposing the equality of the emissivity and 
absorption capacity of bodies, the Kirchhoff law 
excludes the possibility of a circular Thomson-
Planck process, that is, it excludes the possibility 
of creating a second-order perpetual motion 
machine. In this regard, it is puzzling the 
statement (for example, in [18]) that the Kirchhoff 
law is valid only for cases of thermal equilibrium.  
 
Within the Kirchhoff's model, there is a 
consideration of the process of mixed heat 
exchange in heat-conducting optical materials 

consisting of contacting opaque layers. From 
equation (5) it follows that the equilibrium and 
isotropic radiation at the internal boundaries has 
a brightness temperature equal to the 
thermodynamic temperature of the body. In this 
case, the emissivity for a group of layers is 
completely determined by the optical properties 
of the outer surface.  
 
In fact, every physical body spontaneously and 
continuously emits electromagnetic radiation. 
The spectral radiance of the body depends on 
the temperature and frequency of the radiation 
and describes the amount of energy it emits at 
different radiation frequencies. In the limit of 
strong absorption (In the limit of a black body) 
near thermodynamic equilibrium, the spectral 
radiance is closely described by Planck's law 
[19-20]:  
 

 
1

12
,

/2

3




TkBec
TvB






 

 

where  TvB ,  is the spectral radiance (the 

power per unit solid angle and per unit of area 
normal to the propagation) density of frequency ν 

radiation per unit frequency, Bk  is the Boltzmann 

constant,   is the Planck constant, and c is the 
speed of light in the medium. By integrating 

 TvB ,  over the frequency and by subsequently 

integrating over the solid angle, the Stefan–
Boltzmann law is calculated, stating that the 
power emitted per unit area of the surface of a 
black body is directly proportional to the fourth 
power of its absolute temperature [12]. Kirchhoff 
has formulated the law of thermal radiation, 
which states for an arbitrary body emitting and 
absorbing thermal radiation in thermodynamic 
equilibrium, the emissivity is equal to the 
absorptivity [11]. 
 
It would seem that the same reasoning can be 
applied to a weak non equilibrium system of 
coupled semi-transparent layers with an arbitrary 
value of emissivity. However, if this were true, 
then we would not be able to see the objects of 
the outside world. This paradoxical conclusion 
follows from Kirchhoff's law, which does not allow 
radiative heat transfer between bodies with equal 
temperature. Thus, the Kirchhoff's law in its 
classical formulation is not satisfied in semi-
transparent media under weak non equilibrium 
conditions.  
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The radiative heat process discussed above 
does not change the thermodynamic state of the 
body, and, therefore, the process must be 
considered separately from energy-dependent 
emission and absorption processes. We 
calculate a parameter of the gray body, which 
characterizes the integral (at all frequencies) 
emissivity of the medium under weak non 
equilibrium. The gray body parameter is similar 
to the blackness coefficient of the gray body, 
which characterizes the integral emissivity of the 
gray body in equilibrium conditions. 
 

5. A GENERAL EQUATION OF 
RADIATIVE HEAT TRANSFER  

 

Let  AQ  and  BQ  be the resultant flows in the 

direction of the outward normal to the screen 
surfaces A and B, respectively. Let us write 

expressions for outgoing flows, 
 A

outQ  and 

 B
outQ , as a superposition of return flows of gray 

areas and transit flows of transparent elements:  
 

     

     B
in

BB
out

B
in

AA
out

QDQMTSDQ

QDQMTSDQ





)
~

()1(

)
~

()1(

4

4




(15) 

 

Taking into account  A
outin QQQ  (A)(A)  and 

 B
outin QQQ  (B)(B) �, the system of equations (15) 

is reduced to two independent equations for the 
flows outgoing from each side of the screen:  
 

           
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~
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~

)(1[()
~

)(1(

44
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ABB
out

ABB
out

BAA
out

BAA
out

QQQDQMSTDDQMSTDQ

QQQDQMSTDDQMSTDQ







 .                            

(16) 
 
To clarify the physical meaning of expression 
(16), we represent the resulting flows in (16) as a 

superposition of symmetric and antisymmetric 
flows: 
 

 

 
as

B

as
A

QQQ

QQQ




, where 

    
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BA
a
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s

QQQ

QQQ
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                        (17) 
 
Using simple transformations (17), we obtain  
 

 

aassout

aass
A

out

QMQMTSQ

QMQMTSQ





4(B)

4




,       (18) 

 
where  

D

DMD
Ms






1

~
)1( , 

D

DMD
Ma






1

~
)1( .  

 
A comparison of (1) and (18) shows that for both 
symmetric ( 0aQ ) and antisymmetric ( 0sQ ) 

heat exchange, the semi-transparent screen can 
be considered as an opaque body. Identity (1) 
and (18) allows us to determine the gray body 
parameter of a diathermic medium based on the 
characteristics of its opaque equivalent 
 

)21(2

)1(
),(~

2DADD

DA
DAs




 ,  

)21(2

)1(
),(~

2DADD

DA
DAa




         (19) 

 
From (19) it follows that the gray body 
parameters s  and a  do not coincide between 

themselves, and this fact is an essential feature 
of diathermic media. With increasing 
transparency, the values of the gray body 
parameter s  tend to zero and the value of a  

approaches the limit value 1. 

  

 
 

                                                    (a)                                                 (b) 
 

Fig. 4. Schematic picture of resulting flows Qa and Qs in antisymmetric (a) and symmetric (b) 
structures, respectively. External heat flows Qext is converted from radiant flows 
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Indeed, in the case of antisymmetric resulting 
flows (Fig. 4a), there is no conversion of radiant 
flows into thermal flows. But in the case of 
symmetric resulting flows (Fig. 4b), the radiant 
flows are completely converted into thermal 
flows.  
 
Now let's consider a model in which we replace a 
semi-transparent medium with an equivalent 
quadrupole consisting of radiation and thermal 

resistances. Let’s set the values  AQ  and  BQ  

of thermodynamic temperature AT  and BT  of the 

medium and for each side of the translucent 
layer. Note that despite the four-way flow 
exchange, equation (11) contains only two 
linearly independent variables due to two 
constraints,  
 

   
S

B
ext

A
ext QQQ 2 ,  

 
   

S
BA QQQ 2 ,  

 

prescribed by the Energy Conservation Law.  
 
Below, we will denote the coefficient at the 
resulting radiant flow in Eq. (5) by the symbol R 
(this coefficient has the meaning of radiation 
resistance). Denote also the coefficient at the 
thermal flow in the thermal conductivity equation 

rQTT BA   by the symbol r  ( r  has the 

meaning of thermal resistance).  
The black-body concept, introduced by Kirchhoff 
in 1860 [11], assumes that the near-surface layer 
is infinitely thin and ideally absorbs radiation. 
Later, Planck pointed to the internal 
contradictions of the concept, noting that a) the 
radiation should penetrate into the body, but the 
radiation should not be reflected; b) the body 
should have a minimum thickness sufficient to 
absorb the incident flow; c) there should be strict 
restrictions on the scattering of radiation in the 
body [19-20].  
 

Using the operations of splitting and merging 
layers, we find 0

~  and 1
~  for rational values of 

0k . Using ~1
~

R , we have  
 

 
  1

~
1

~
1

~
1

~
~






kk

kk

RRk

RRk
R .         (20) 

 

The expression (20) can be written in a simpler 
form if we take the number of layers K , which is 

equivalent to a black screen ( 0
~
R , 1~  ), as a 

unit of diathermal thickness. Then, we have  
 

1

1
)(

~





x

x
xR , where 

K

k
x  , and 

1
~

1
~

1

1





R

R
K . 

                       (21) 
 

 

 
 

Fig. 5. Isolines of the surface of a coefficient  DRR ,
~  . Here, )1/(* DRR  , R  is reflectance, D  

is transmittance  
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Fig. 6. Dependence of a coefficients  xR~  and  xD~  on a diathermic layer thickness x  

 

The gray body parameter ~  includes 
independent optical characteristics, which are 
due to the different nature of heat transfer 
mechanisms. In Fig. 5, surface contour lines 

 DRR ,
~   show the contribution of various 

mechanisms to heat transfer. The absorbed flow 
is converted into heat by interaction with the 
substance, and is transferred through the body 
volume due to heat conduction. According to 
Kirchhoff's law, on the other side of the body, 
there is a conversion of heat into radiant energy. 
This mechanism is typical for bodies with 

parameter 0
~
R . For diathermic media with 

parameter 0
~
R , heat transfer occurs mainly 

due to the difference in transit flows. The isoline 

0
~
R  corresponds to the transition from the 

mode of primary radiation transmission to the 
mode of radiation reflection. Fig. 6 shows the 

dependences of coefficients  xR~  and  xD~  on a 

diathermic layer thickness x . The function has a 
symmetric form, and in the conditions of 

complementary processes, we can write RD
~~

 . 
 

The dependences  xD~  show that the Bouguer – 

Lambert – Beer law is not observed in the case 
of radiative transfer in diathermic systems with a 
large optical thickness. This is due to the 
phenomena of multiple reflection and re-radiation 
(diffusion) of the primary radiant flow. 

 
6. CONCLUSION  
 
In this work, in the framework of the macroscopic 
approach, we propose a method for calculating 
radiant heat transfer, which is applicable to both 
opaque and diathermic weak nonequilibrium 
media. The universal algorithm for describing 

various media is due to the possibility of 
replacing the optical characteristics of the body 
(absorptance, reflectance, and transmittance) by 

a gray body parameter ~ , which describes a 
semi-transparent medium as opaque. It is shown 
that the representation of a system of partially 
transparent bodies by a chain of equivalent 
radiation resistances makes it possible to 
describe radiative heat transfer in media 
consisting of intermittent heat-conducting and 
heat-insulating layers. The introduction of a gray 
body parameter for semi-transparent                        
layers made it possible to remove the restriction 
on the number of splitting layers, and thus 
proceed to the description of continuous                    
media with low thermal conductivity (examples of 
such media are screen-vacuum and powder 
thermal insulation). Considered screen-vacuum 
and powder insulation are examples of such 
media. The proposed method for                        
calculating heat transfer in a semi-transparent 
medium                          can also be used in 
aeronomic studies of the Earth and planets, as 
well as in astrophysics.  
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