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Abstract 
 

In this research paper, Ig-open sets are used to define and study some separation axioms in ideal 
topological spaces. The implications of these axioms among themselves and with the known axioms are 
investigated. 
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1 Introduction 
 
The subject of ideals in topological spaces has been introduced by Kuratowski [1] and Vaidyanathasamy [2].  
An Ideal I on a topological space (X, ) is defined as a non-empty collection I of subsets of X satisfying the 
following two conditions (i) if A  I and B A, then B  I (ii) If A  I and B  I ,then A  B  I. Given a 
topological space (X, ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator (.)*: 
P(X)P(X), called the local function [2] of A with respect to  and I, is defined as follows : For A  X, 
A*(,I) = {x X/ UA I for every open neighbourhood U of x}. A Kuratowski closure operator cl*(.) for a 
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topology *(,I) called the *-topology, finer than  is defined by cl*(A) = A A*(,I) where there is no 
chance of confusion, A*(I) is denoted by A*. If I is an ideal on X, then (X,,I) is called an ideal topological 
space. In this paper, Ig-closed sets are used to define some weak separation axioms and to study some of 
their basic properties. The implications of these axioms among themselves and with the known axioms are 
investigated. 
 
Separation axioms on topological spaces are those to classify the classes of topological spaces.  T2 axiom is 
an important axiom as it has many applications. Several topologists [3,4,5] concentrate on separation axioms 
between T0, T1, and T2. In this paper, the concept of Ig-T0 space, Ig-T1 space, and Ig-T3 space are 
introduced , characterized and studied their relationships with some of known axioms. 
 

2 Preliminaries 
 
Definition 2.1[6]: Let (X, ) be a topological space and I be an ideal on X. A subset A of X is said to be α-
Ideal generalized closed set (Ig-closed set ) if A* U whenever A  U and U is α-open. 
 
Definition 2.2[7]: A subset A of a topological space (X,) is said to be clopen, if it is both open and closed 
in (X,). 
 
Definition 2.3[8]: A topological space (X, ) is said to be T0 space if for each pair of distinct points x, y of 
X, there exists an open set containing one point but not the other. 
 
Definition 2.4[7]: A topological space (X, ) is said to be T1 space if for each pair of distinct points x, y of 
X, there exists a pair of open sets, one containing x but not y and the other containing y but not x. 
 
Definition 2.5: A topological space (X, ) is said to be  T2 Space if for each pair of distinct points x, y of X, 

there exists open sets U and V such that x  U and y  V and UV = . 
 
Definition 2.6[6]: A topological space (X, ) is said to be  Ultra Hausdroff  space if for pair of distinct points 

x and y in X there exit two clopen sets U and V containing x and y such that U  V = . 
 

3 Ig-T0 Spaces 
 
In this section, an Ig-closed sets are used to define the topological space Ig-T0 space and some of their 
properties are discussed. 
 
Definition 3.1: An ideal topological space (X,,I) is said to be Ig-T0 space if for each pair of distinct points 
x,y of X, there exists an Ig-open set containing one point but not the other. 
 
Theorem 3.2: An ideal topological space (X,,I) is an Ig-T0 space if and only if Ig-closures of distinct 
points are distinct. 
 
Proof: Let x and y be two distinct points in X and X be an Ig-T0 space. Then, there exists an Ig-open set 
G such that x  G but y  G. Also x Gc and y Gc where Gc is an Ig-closed set in X. Since Igcl({y}) is 
the intersection of all Ig-closed sets which contains y, y Igcl({y}) but xIgcl({y}) as xGc. 
Thus,Igcl({x}) Igcl({y}). 
 
Conversely, suppose that for any pair of distinct points x and y in X, Igcl({x}) Igcl({y}). Then, there 
exists atleast one point z X such that z Igcl({x}) but z Igcl({y}). If x Igcl({y}), Igcl({x}) 
Igcl({y}), then z Igcl({y}), which is a contradiction. Hence xIgcl({y}).  Now,xIgcl({y}) 
implies x (Igcl({y}))c, which is an  Ig-open set in X containing x but not y. Hence X is an  Ig-T0 space. 
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Theorem 3.3: Every subspace of an Ig-T0 space is an Ig-T0 space. 
 
Proof: Let X be anIg-T0 space and Y be a subspace of X. Let x,y be two distinct points of Y. Since Y  X 
and X is an Ig-T0 space, there exists an Ig-open set G such that x G but y  G.  Then, there exists an 
Ig-open set GY in Y which contains x but does not contain y.  Hence Y is an Ig-T0 space. 
 
Theorem 3.4: Every T0 space is an Ig-T0 space.  
 
Proof: Let x and y be two distinct points in (X,,I) and X be an T0 space. Then, there exists an open set G 
such that x G and y  G. Since every open set is an Ig-open set, G is an Ig-open set where x G and y 
 G.  This implies, (X,,I) is an Ig-T0 space. 
 
Remark 3.5: The converse of the above theorem need not be true as seen from the following example. 
 
Example 3.6: Consider the ideal topological space (X,,I), where X={a,b,c} with = {,{a, b},X} and I= 
{,{a}}.Then, X is an Ig-T0 space but not T0 space, since a and b are contained in all the open sets of X. 
 
Definition 3.7: A function �: (X,,I)  (Y,,J) is said to beIg-totally continuous, if the inverse image of 
every Ig-open subset of Y is clopen in X. 
 
Theorem 3.8: Let	� : (X,,I)  (Y,,J) be an injective map and Y is an Ig-T0 space.  If � is an Ig-totally 
continuous then, X is Ultra-Hausdroff. 
 
Proof: Let x and y be two distinct points in X. Since � is injective, �(x) and �(y)  Y such that �(x)�(y).  
Since Y is an Ig-T0 space, there exists an Ig-open set U containing �(a) but not �(b).  Then, we have a 
	���(U) and b ��� (U).  Thus,a ���(U),b  (���(U))c and ��� (U) is clopen in X because � is Ig-
totally continuous.  This implies, every pair of distinct points of X can be separated by disjoint clopen sets in 
X. Therefore, X is Ultra-Hausdroff. 
 
Theorem 3.9: Let  : (X,,I)  (Y,,J) be an Ig-irresolute bijective map. If Y is an Ig-T0 space, then X is 
Ig-T0 space. 
 
Proof: Assume that Y is an Ig-T0 space. Let u, v be two distinct points of Y. Since � is a bijection, for 
every x,y X such that ��� (u) = x and ��� (v)= y. Since Y is anIg-T0 space, there exists an Ig-open set 
H in Y such that u H but v H. Since � is Ig-irresolute, ���(H) is Ig-open in X containing �(x) = u but 
not containing �(y) = v. Thus, there exists an Ig-open set���(H) in X such that x ���(H) but y ���(H) 
and hence X is an Ig-T0 space. 
 

4 Ig-T1 Space 
 
In this section, an Ig-closed sets are used to define the new topological space Ig-T1 space and some of 
their properties are discussed. 
 
Definition 4.1: An ideal topological space (X,,I) is said to be Ig-T1 space, if for each pair of distinct 
points x, y of X, there exists a pair of Ig-open sets, one containing x but not y and the other containing y 
but not x. 
 
Theorem 4.2: Every subspace of an Ig-T1 space is also an Ig-T1 space. 
 
Proof: Let X be an Ig-T1 space and let Y be a subspace of X.Let x, y Y X such that x  y. By 
hypothesis X is anIg-T1 space, hence there exists an Ig-open sets U, V in X such that x  U and y  V, 
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x V and y  U. By definition of subspace, UY and VY are Ig-open sets in Y. Further, x  U, x  Y 
implies x  UY also y V, y Y implies y  V Y.  Thus, there exists Ig-open sets UY and VY in 
Y such that x  UY, y  VY and x VY, y U Y.  Therefore, Y is an     Ig-T1 space. 
 

Theorem 4.3: Every T1 space is an Ig – T1 space. 
 
Proof: Let x and y be two distinct points in (X,,I) and X be an T1 space. Then, there exists a pair of open 
sets U and V in X such that x U and y  U,y V and x  V. Since every open set is an Ig-open set, 
therefore U and V are Ig-open sets where x U and y  U,y V and x  V. This implies that, (X,,I) is an 
Ig-T1 space. 
 
Remark 4.4: The converse of the above theorem need not be true as seen from the following example 

 
Example 4.5: Consider the ideal topological space (X,,I), where X={a,b,c} with = {,{a,b}, X} and I= 
{,{a}}.Then, X is anIg-T1 space but not T1 space, since there is no open set containing a but not 
containing b. 
 

Theorem 4.6: Every Ig-T1 space is an Ig-T0 space. 
 
Proof: Suppose X is an Ig-T1space, then for distinct points x and y in X, there exists an Ig-open sets G 
and H such that x G, y  G and y H, x  H. Since GH =  , x  G and y H. Then, either x G, y  G 
or y H, x  H. Thus, X is an Ig-T0 space. 
 
Remark 4.7: The converse of the above theorem need not be true as seen from the following example. 
 
Example 4.8: Consider the ideal topological space (X,,I), where X = {a,b,c} with  = {,{a,b}, X} and            
I = {,{a}}.Then, X is an Ig-T0 space but not an Ig-T1 space since for the distinct points b and c, there 
exists a pair of Ig-open sets {a,b} and {b,c} one containing b but not c and the other containing both b and 
c. 
 
Theorem 4.9: Let �: (X,,I)  (Y,,J) be an injective and Y be an Ig-T1 space. If � is Ig-irresolute, then 

X is an Ig-T1 space. 
 
Proof: Assume that Y is an Ig-T1 space.  Let x,yY such that x  y. Then, there exists a pair of  Ig-open 
sets U,V in Y such that �(x)  U and �(y) V, �(x)  V and  �(y)  U which implies x ��� (U) , y ��� 
(V) and x ���(V), y ���(U). Since � is Ig-irresolute, X is Ig-T1 space. 
 
Theorem 4.10: If �: (X,,I)  (Y,,J) is Ig-totally continuous and Y is Ig-T1 space, then X is clopen. 
 
Proof: Let x and y be any two distinct points in X.  Since � is injective, �(x) and �(y)  Y such that �(x) 
�(y). Since Y is anIg-T1 space, there exists Ig-open sets U and V in Y such that	�(x)  U and �(y)  U, 
�(y)  V and �(x)  V.  Therefore, we have x ���(U) and y ���(U), y ���(V) and x ���(V), where 
���(U) and ���(V) are clopen subsets of X since� is Ig-totally continuous function. This shows that, X is 
clopen. 
 
Theorem 4.11: If {x} is Ig-closed in X, for every x X,then X is Ig-T1 space. 
 
Proof: Let x,y be two distinct points of X such that {x} and {y} are Ig-closed. Then, {x}c and {y}c areIg-
open  in X such that y  {x}c  but x  {x}c  and x {y}c but y  {y}c.  Hence X is an Ig-T1 space. 
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5 Ig – T2 Space 
 
In this section, an Ig-closed sets are used to define the new topological space Ig-T2 space and some of 
their properties are discussed. 
 
Definition 5.1: An ideal topological space (X,,I) is said to be Ig-T2space, if for each pair of distinct points 

x, y of X, there exists Ig-open sets U and V such that x  U and y  V and UV = . 
 
Theorem 5.2: Every T2 Space is an Ig-T2 Space. 
 
Proof: Let x and y be two distinct points in (X,,I) and X be an T2 space. Then, there exists a pair of open set 
U, V in X such that x U and y V and UV = .Since every open set is an Ig-open set, therefore U and 
V are Ig-open sets where x U and y V and UV = . This implies (X,,I) is an Ig-T2 space. 
 
Remark 5.3: The converse of the above theorem need not be true as seen from the following example. 
 
Example 5.4: Consider the ideal topological space (X,,I), where X= {a,b,c,d} with ={,{a},{b,d},{a,b,d}, 
X} and I = {, {a}}.  Then, X is an Ig-T2 Space but not T2 Space because the intersection of open sets { } 
and {a,b,d} is not empty. 
 
Theorem 5.5: Every Ig-T2space is an Ig-T1space. 
 
Proof: Suppose X is anIg-T2 Space, then for distinct points x and y in X there exists Ig-open sets G and H 
such that GH = . Therefore, x G, y  G and y H, x  H. Thus, X is an Ig – T1 space. 
 
Remark 5.6: The converse of the above theorem need not be true as seen from the following example. 
 
Example 5.7: Consider the ideal topological space (X,,I), where X= {a,b,c} with ={,{a},{a,c}, X} and I 
= {,{a}}. Then, X is an Ig-T1space but not an Ig-T2space because the intersection of Ig-open sets {a,b} 
and {a,c} is not empty. 
 
Theorem 5.8: Every subspace of an Ig-T2 Space is also anIg-T2 Space. 
 
Proof: Let X be anIg-T2 space and let Y be a subspace of X. Let a, b  Y  X with a  b. By hypothesis, 
there exists Ig-open sets G,H in X such that a  G and b  H , GH = . By definition of subspace, GY 
and HY are Ig-open sets in Y. Further a  G, a  Y implies a GY and b  H, b  Y implies b 
HY. Since GH = , (YG)(YH) = Y(GH) = Y = . Therefore, GY and HY are disjoint 
Ig-open sets in Y such that a  GY and b  HY.  Thus, Y is Ig-T2space. 
 
Theorem 5.9: If�: (X,,I)  (Y,,J) is Ig-totally continuous injection and Y is Ig-T2 Space, then X is 
ultra-Hausdorff. 
 
Proof: Let x and y be any two distinct points in X.  Since � is injective, �(x) and �(y)  Y such that �(x) 
�(y). Since Y is an Ig-T2space, there exists Ig-open sets U and V such that �(x)  U and �(y)  V and 
UV = . This implies, x���(U) and y ���(V). Since � is Ig-totally continuous, ���(U) and ���V) are 
clopen sets in X. Also,���(U)���(V) = ���(UV) = . Thus, every two distinct points of X can be 
separated by disjoint clopen sets. Hence X is ultra-Hausdorff. 
 
Theorem 5.10: If {x} is I- closed in X, for every x X, then X is Ig-T2 space. 
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Proof: Let x, y be two distinct points of X such that {x} and {y} are Ig-closed. Then, {x}c and {y}c 
areIg-open  in X such that y  {x}c  but x  {x}c  and x  {y}c but y  {y}c.This implies, {x}c{y}c = . 
Hence X is Ig-T2 space. 
 
Theorem 5.11: If X is Ig-T2 space, then for yx X, there exists an Ig-open set G such that x  G and y 
Ig –cl(G). 
 
Proof: Let x , y  X such that y  x. Since X is an Ig-T2 space, there exists disjoint Ig- open sets G and H 
in X such that x  G and y  H. Therefore, Hc is Ig-closed set such that Igcl(G) Hc. Since y  H, we 
have y Hc+. Hence y Igcl(G). 
 
Definition 5.12: Afunction f:(X, τ, I)  (Y, σ, J) is called totally Ig-continuous, if f��(V) is Ig-clopen in 
(X, τ, I) for each open set V in (Y, ). 
 
Theorem 5.13: If �: (X,,I)  (Y,,J) is totally Ig-continuous, injection and Y is T0, then X is  an Ig-T2 

space.  
 
Proof: Let x and y be any two distinct points in X. Since � is injective, we have �(x) and �(y)  Y such that 
�(x) � (y).  Since Y is T0, there exists open set U containing �(x) but not � (y).  Then, x f ��(U) and y 
f ��(U). Since �	is totally Ig-continuous, f��(U) is an Ig-clopen subset of X.  Also, x f��(U) and y  
(f��(U))c. Therefore, X is an Ig-T2 space. 
 
Theorem 5.14: A function � : X  Y is Ig-totally continuous, if its graph function is Ig-totally 
continuous. 
 
Proof: Let �: X X	×Y be the graph function of�: X  Y. Suppose � is Ig-totally continuous and F be 
anIg-open set in Y. Then, X 	×	 F is an Ig-open set in X ×	Y. Since � is Ig-totally continuous, ��� (X × 
F)= ���(F) is clopen in X. Thus, the inverse image of every Ig-open set in Y is clopen in X. Hence,� is 
Ig-totally continuous.  
 
Theorem 5.15: Product of two Ig-T0 space is also an Ig-T0 space. 
 
Proof: Let X and Y be two ideal topological spaces and let X ×Y be their product space. If x and y are 
distinct points of X, there exists an Ig-open set U in X such that it contains only one of these two and not 
the other, since X is  an Ig-T0 space. Let (x1, y1) and (x2, y2) be any two distinct points of X ×Y then either 
x1  x2 or y1 y2. If x1 x2, there exists an Ig-open set U such that x1 U and x2 U, since X is Ig-T0 
space. Therefore, U ×,Y is anIg-open set containing (x1, y1) but not containing (x2, y2). Similarly, ify1 y2, 
there exists an Ig-open set V such that y1  V and y2  V, since Y is an Ig-T0 space. Therefore, X ×V is 
anIg-open set containing (x1, y1) but not containing (x2, y2).Hence corresponding to distinct points of X 	×
	Y, there exists anIg-open set containing one but not the other so that X 	×	Y is anIg-T0 space. 
 
Theorem 5.16: Product of two Ig-T1 space is also an Ig-T1 space. 
 
Proof: Let X and Y be two ideal topological spaces and let X×	Y be their product space. Let (x,y) be an 
arbitrary point of X 	×	Y so that x X and y Y. Since X and Y are Ig-T1 space,{x} and {y} are Ig-
closed in X and Y respectively and hence x Xc and y Yc are  Ig-open. Then, (x,y) (X ×Y)c is anIg-
open set. Thus, {(x,y)} is Ig-closed. 
 
Theorem 5.17: Product of two Ig-T2 space is an Ig-T2 space. 
 
Proof: Let X and Y be two ideal topological spaces and let X ×	Y be their product space.Let x and y be 
distinct points of X. Let (x1, y1) and (x2, y2) be any two distinct points of X×Y then, either x1  x2 or y1 y2. 
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If x1  x2 and since X is Ig-T2 space, there exists two Ig-open sets U and V in X such that x1 U,x2 V 
and UV=. Hence U 	×	Y and V ×	Y are Ig-open sets containing (x1, y1) and (x2, y2) respectively such 
that (U ×	Y)  (V ×	Y) = (UV)	× � =	. Hence (X ×	Y) is anIg-T2 space. 
 

6 Diagram 
 
As a consequence of the theorems [3.4,4.3,4.6,5.2,5.5] and remarks [3.5,4.4,4.7,5.3,5.6] the following 
implication diagram holds. 
 

 
 
In this diagram, A  B means A implies B but does not imply A. 
 

7 Conclusion 
 
The concept of Ig-T0 space, Ig-T1 space, and Ig-T3 space were introduced, characterized and studied 
their relationships with some of known axioms. 
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