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Abstract 

 
In this paper, we characterize Murray-von Neumann equivalent projections. We also investigate and compare 

the relationship between the Murray von Neumann relation and other equivalence relations on the set 

        of orthogonal projections in the von Neumann algebra     . 
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1 Introduction  
 

Let   denote a Hilbert space and      denote the Banach algebra of bounded linear operators on  . If 

      , then    denotes the adjoint of  , while                    and    stands for the kernel of  , 

range of  , closure of   and orthogonal complement of a closed subspace   of  , respectively. We denote by 

         the spectrum and the norm of  , respectively. 

 

An operator        is an orthogonal projection if        ; an isometry if      ; unitary if     
     ; symmetry if         , i.e, if             ; normal if          an involution if 

    . 
 

A subspace   of   is said to be invariant under        if        and is said to reduce   if it is 

invariant under both   and   . Two operators        and        are said to be similar (denoted     ) 

if there exists an invertible operator        such that       or equivalently        , and are 

unitarily equivalent (denoted by     ) if there exists a unitary operator         (Banach algebra of all 

invertible operators in      ) such that       (i.e.       , equivalently,         ). Two operators 

       and        are said to be metrically equivalent (denoted by  
   

  ) if          , 

(equivalently,          
 

           
 

  for all     or   
   

  if        . (cf. [1]). Two operators 

       and        are said to be almost similar (denoted   
     

  ) if there exists an invertible operator 

       such that               and                . 

 

An operator          is called partial isometry if it is an isometry on         . That is 

 

      
                

          
  

 

In this case,            is called the initial space of   and           is called the final space of  . 

 

Two projections   and   in      are said to be Murray-von Neumann equivalent, denoted by   
     

 , if 

there exists an operator        such that       and      . The notion of Murray-von Neumann 

equivalence of projections was introduced by Berberian [2] and has since generated considerable interest to 

operator theorists (see [3-5]). 

 

A von Neumann algebra   is a strongly closed   -subalgebra of     . The commutant of a von Neumann 

algebra   is the set                        . We denote by      the set of all orthogonal 

projections in   and by                     , for all      the center of  . If      
        , then   is called a factor. 

 

Given two projections    , if     is a projection (i.e.     or equivalently,       ), we call   a sub-

projection of   and write    , where "    denotes the Murray-von Neumann order on      

           . We write     if and only if   
     

   for a certain sub-projection     . Clearly     

for any projection  . Note that for any              or    . Indeed,     and     implies that 

  
  - -  

 . Clearly, the order   in      translates into the Murray-von Neumann order between orthogonal 

projections. 

 

A projection        is called a central projection if   commutes with every projection in     . For each 

                  stands for the central support or central carrier of  , where the central carrier    of 

an operator   in a von Neumann algebra   is the projection    , where   is the union (that is,         ) of 

all central projections    in   such that     .    can as well be defined as the intersection of all central 

projections   such that     . For any projection      is the smallest projection in the center      

containing   as a sub-projection (i.e., it is the smallest projection   in the centre such that        . That is, 

every projection   in a von Neumann algebra has a central carrier since      is itself a von Neumann algebra. 

The von Neumann algebra plays a role in determining central carriers. For example, the central carrier of a 

projection   (different from 0 and I) relative to the algebra of all bounded operators      and relative to the 
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von Neumann algebra generated by   and  . In the first case the central carrier is   and in the second it is  . It is 

well-known that for any operator   in a von Neumann algebra         (see [4] and [5]). 

 

If an operator          has closed range, the restriction            
           is a boundedly invertible 

operator and the inverse defined on         can be defined on all of   by letting                          . 

The extension uniquely determined by  , and denoted by   , is called the Moore-Penrose inverse or pseudo-

inverse of   and it is the unique solution to the equations 

 

                                       
 

Clearly    exists if and only if         is closed. In this case,     and     are the orthogonal projections onto 

        and         , respectively and                   . 

 

Unlike the Moore-Penrose inverse, the Drazin inverse is defined on     . The Drazin inverse of        is 

the unique operator denoted by    satisfying 

 

                            
 

where            , the smallest nonnegative integer   such that                      . If            , 

then   is invertible and       . The Drazin inverse was developed by Drazin in 1958 [6] and it was proved 

that if          with        , then             . Thus        is said to have a Drazin 

inverse or to be Drazin invertible if there exists        such that 

 

                       
 

In this case      is called the Drazin inverse of  . For every   there exists at most one such  . 

 

To set the stage, we first state and prove some results which are useful in the proof of the main results. 

 

2 Preliminary Results 
 

From now on, if there is no danger of confusion, by a projection we mean an orthogonal projection. 

 

Recall that        is a partial isometry if there exists a subspace     such that         , for all 

           , (i.e., it is isometric on the orthogonal complement of its kernel) and        if     . 

This means that    is the Moore-Penrose inverse of  . That is,       . The class of partial isometries was 

first studied by Halmos and McLaughlin [7] and they have shown that every partial isometry        has a 

canonical representation as    
  
  

  on                   , with          . This result was 

improved by Halmos ([8],      , where it is stated that every partial isometry   is bounded and if    , then 

     . Clearly a partial isometry is a contraction and therefore its spectrum is necessarily a subset of the 

closed unit disc in  . A non-empty compact subset   of   is the spectrum of a partial isometry   if and only if 

either     , the unit circle/circumference (i.e. it does not contain the origin:   is invertible and hence 

unitary) or     , with     (i.e.   is not invertible) ([8],      , where   denotes the open unit disc of the 

plane. For more properties the reader may consult ([8], Chapter 15). 

 

Proposition     ([9], Theorem 3). Let   be an operator on a Hilbert space  . Then the following statements 

are mutually equivalent. 

 

a)   is a partial isometry. 

b)    is a partial isometry. 

c)         
d)         . 

e)     and     are projection operators. 

f)         . 
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Proof. See ([9], Theorem 3 and [10], Theorem 2.3). 

 

Remark. The projections     and     in Proposition     are called the initial and final projections of  , 

respectively. The class of partial isometries is wider than the class of isometries. It contains isometries, co-

isometries and also projection operators. The set of all partial isometries on a Hilbert space   forms a 

semigroup. By a semigroup of operators on   we simply mean a set   closed under multiplication; it is said to 

be self-adjoint if               . Thus, the concept of self-adjoint semigroups of partial isometries is a 

direct and natural generalization of that of groups of unitary operators or semigroup orthogonal projections, 

which is abelian. 

 

Theorem 2.2. Let        such that     . Then   is a partial isometry if and only if     . Furthermore, 

if   is both idempotent and a partial isometry, then           , where    and    denote the Penrose 

and Drazin inverse of  , respectively. 

 

Proof. Suppose     . If     , then           . This means that          and therefore by 

Proposition           is a partial isometry. Conversely, if       , then       and since        is 

necessarily self-adjoint. In this case,           . 

 

Proposition 2.3. If   is a partial isometry then the following statements are equivalent. 

 

a) The non-zero eigenvalues of   lie on the unit circle. 

b)       , for some unitary operator   and a triangular operator matrix         with         or 0 , for 

each  . 
 

Example. The operator    
  
  

  acting on      satisfies the properties of Proposition    . 

 

Theorem     ([11], Proposition 5.87). If       is a partial isometry, then      where            
  is an isometry and       is the orthogonal projection onto         . Conversely, let   be any 

subspace of  . If       is an isometry and       is the orthogonal projection onto  , then 

         is a partial isometry. 

 

Proposition 2.5. A partial isometry        is an isometry if and only if           . That is, if 

           . 
 

Proof. Let       . If   is an isometry, then      . Therefore              and hence           . 

Conversely, suppose that           . Then            , and since        we have that      . This 

establishes the claim. 

 

Example. The operator    
  
  

  on      is a partial isometry which is not an isometry. 

 

Proposition 2.6. Every orthogonal projection        is a partial isometry. 

 

Proof.  If        , then       and therefore          . 

 

For any       , the maps       and       are continuous In particular, if   is a partial isometry, 

then the mapst               and                are continuous. 

 

Proposition 2.7. Let          such that        . Then    is invertible if and only if   and   are 

invertible. 

 

Theorem     ([9], Theorem         . The following conditions on an operator   are equivalent: 

 

(i)   is a partial isometry and quasinormal. 

(ii)   is the direct sum of an isometry and zero. 
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Theorem     ([9], Theorem         . Let   be an operator on a Hilbert space  . Then 

 

(i)    is a normal partial isometry if and only if   is the direct sum of a unitary operator and zero. 

(ii)    is a subnormal partial isometry if and only if   is the direct sum of an isometry and zero. 

 

Theorem 2.10. Let   be a partial isometry such that       and      . Then 

 

(i)                                                    . 

(ii)                                                        . 

(iii) if   is self-adjoint. then                 and                                    . 

 

Proof. The proof of (i) and (ii) follows from the definition. To show (iii), we note that since     , by (i) and 

(ii), we have                                  and                                                                           . 

 

Proposition 2.11. If        is such that        , then   is invertible. 

 

3 Main Results 
 

Recall that two projections   and   in      are said to be Murray-von Neumann equivalent, denoted by 

         if there exists an operator        such that       and      . 

 

Remark. Clearly, the operator   implementing the Murray-von Neumann equivalence of any two orthogonal 

projections is automatically a partial isometry. That is, it satisfies       . Thus, two orthogonal projections 

are Murray-von Neumann equivalent exactly when there is a partial isometry with one projection as the initial 

projection and the other as the final projection. For any partial isometry  , its initial projection   is the smallest 

projection (with respect to the partial ordering   on      ) such that      and its final projection   is the 

smallest projection such that     . 

 

Theorem 3.1. Let   be a partial isometry and let   and   be Murray-von Neumann equivalent projections with 

respect to  . Then        . 

 

Proof. Suppose       and       for a partial isometry  . Then from the definition and the above remark, 

we have                 . 

 

Theorem     also says that if   and   be Murray-von Neumann equivalent projections with respect to  , then 

          . A consequence of this result is that       . Using Theorem 3.1, we have that two 

projections   and   are Murray-von Neumann equivalent if there exists a partial isometry   such that   
    . 

 

Proposition 3.2. The Murray-von Neumann relation is an equivalence relation on the family         of 

projections in     . 

 

Proof. Suppose that   and   are projections such that       and      , for some partial isometry  . 

Reflexivity follows easily from Proposition    , because a projection is also a partial isometry. Symmetry 

follows from Proposition     since    is a partial isometry (with the initial and final spaces interchanged) 

whenever   is. Now suppose     and   are projections and that   
     

  and   
     

 . Then there exists 

partial isometries   and   such that                 and      . Now let     . Then using 

the proof of Theorem 3.1,   is also a partial isometry and that                      , and 

                      which proves transitivity. 

 

For any partial isometry       , its initial space is           and its final space is          . Clearly   is 

understood to be a unitary operator in                       , in the sense that                and 

              . 
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For a given partial isometry       , either                                          or 

                   . If                    , then   is a unitary in             . If           

         , then the partial isometry    satisfies                                 . This is equivalent 

to saying that the initial space of    coincides with the final space of                 l space of   coincides 

with the final space of   . In other words, the final space of    is properly contained in the initial space of   . 

Similarly, if                    , then the initial space of    is properly contained in the final space of   . 

 

3.1 Murray-von Neumann relation and other operator relations 
 
The following result gives a condition under which Murray-von Neumann equivalence implies unitary 

equivalence and hence similarity of projection operators. 

 

Theorem 3.3. Let   and   be projections such that          with an implementing partial isometry  . If   

is invertible then   and   are similar projections. 

 

Proof. Suppose        nd      . Invertibility of   implies   is unitary and hence by Theorem       
           Thus                   

 

Theorem     also says if   in invertible, then       and       are also invertible. This also means that 

     , since the only invertible projection is the identity operator. In addition, we conclude that   is 

unitary, since every invertible partial isometry is unitary. 

 

Corollary 3.4. Let   and   be invertible projections. If   
     

  with an implementing partial isometry   

then    . 

 

Corollary     says that for invertible projections in a Hilbert space  , the notions of unitary equivalence, 

similarity, quasisimilarity, metric equivalence and Murray von Neumann equivalence coincide with equality. 

The statement is also valid if we assume that   is a normal partial isometry. Note that a normal partial isometry 

need not be unitary. The operator    
   
   
   

  is a normal partial isometry which is a direct sum of a 

unitary and zero but it is not unitary. 

 

Corollary 3.5. Let   and   be projections such that       and       for some partial isometry  . If   is 

normal then      
 

Proof. This follows from              . 

 

Remark. We note that for any orthogonal projections         , if       and       for some partial 

isometry  , the condition of   being either normal, unitary, or invertible and the condition of invertibility of 

both   and   all coincide. If any of these conditions is satisfied, then    . 

 

Proposition 3.6. If   and   are unitarily equivalent projections then they are Murray-von Neumann equivalent. 

Proof. Suppose that        for some unitary operator  . Since a unitary operator is a partial isometry, the 

result follows from the proof of Theorem 3.1. 

 

We remark that Murray-von Neumann equivalence does not in general imply unitary equivalence or metric 

equivalence of projection operators. Let   be a non-unitary partial isometry, for instance, the unilateral shift on 

    . Then       and       are projections. Clearly  
     

   but   and   are not unitarily equivalent. 

A simple calculation also shows that these projection operators are not metrically equivalent. In finite 

dimensions, it is clear that Murray-von Neumann equivalence implies similarity. However, this is not true in 

infinite dimensions. To see this, let       and      , where   is the unilateral shift operator on   . This 

example also shows that Murray-von Neumann equivalence does not in general imply metric equivalence of 

projection operators. 
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If            are elements in     , then                   denotes the     matrix whose main diagonal 

consists of the elements           . The following result gives a condition when Murray-von Neumann 

equivalence implies unitary equivalence of operators. 

 

Proposition 3.7. Let   and   be projections. If   
     

  then            is unitarily equivalent to 

          . 

 

Proof. Suppose there is a partial isometry   such that       and      . Then by Theorem 3.1, we have 

that            . Using this fact, the operators    
    

       and    
    

    
  are 

unitary and hence    is also unitary. Clearly 

 

   
  
  

        
     

  
      

  
  

     
  
  

   

 

The following two results are a consequence of Proposition 3.7.  

 

Corollary 3.8. Let   and   be projections. If   
     

  then                   . 
 

This result can be improved as follows. 

 

Corollary 3.9. Let   and   be Murray-von Neumann equivalent projections. If   and   are invertible, then 

           
 

Proof. There are several ways to prove this result. One of them is to use the fact that since   and   are 

invertible, 0 is not contained in the spectra of   and    The rest of the proof follows upon application of 

Corollary 3.8. The other is to use Corollary 3.4. That is,    . 

 

Theorem 3.10. Two projections   and   acting on a Hilbert space   are unitarily equivalent if and only if 

           )                and                             . 
 

Proof. Suppose       , where   is a unitary operator. Then        Since   is an isomorphism (indeed, 

an automorphism), it preserves the dimension of the Hilbert space. Therefore                            . 
The rest of the proof follows from the self-adjointness of   and   and the fact that                  , for 

any       . 

 

Theorem      says that two projections on a Hilbert space   are unitarily equivalent if and only if they have 

the same rank and nullity. The following weaker condition is necessary and sufficient for Murray-von Neumann 

equivalence. 

 

Theorem 3.11. Two projections   are   on a Hilbert space   are Murray-von Neumann equivalent if and only 

if                            . 

 

This says that two projections are Murray-von Neumann equivalent if and only if they have the same rank. 

Example. Consider the projections    
   
   
   

     
   
   
   

      
   
   
   

  and    
   
   
   

  

acting on the Hilbert space     . A simple calculation shows that   and   are Murray-von Neumann 

equivalent, with the equivalence being implemented by the partial isometry    
   
   
   

 . A simple 

calculation also shows that   and   are Murray-von Neumann equivalent, with the equivalence being 

implemented by the partial isometry    
   
   
   

 . Also   and   are Murray-von Neumann equivalent, 
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with the equivalence being implemented by the partial isometry    
   
   
   

 . By Theorem 3.11,   is not 

Murray-von Neumann equivalent to either     or  . 
 
 

A simple calculation also shows that     and   are pairwise similar and also pairwise almost similar. In 

particular,    
   
    
    

  implements the similarity and also the almost similarity between   and  . A 

closer look also reveals that     and   are pairwise unitarily equivalent. The operator   is Murray-von 

Neumann equivalent to, for instance, the operator    
   
   
   

 , with the equivalence being implemented by 

the partial isometry    
   
   
   

 . 

 

Remark. We note that the partial isometry implementing the Murray-von Neumann equivalence of two 

projections need not be unique. For instance, in the example above, the partial isometry    
   
   
   

  also 

implements the Murray-von Neumann equivalence between   and  . The next result gives the relation between 

the partial isometries implementing a Murray-von Neumann equivalence of two projections   and  . 

 

Theorem 3.12. Suppose   and   are Murray-von Neumann equivalent projections with distinct partial 

isometries   and   implementing the equivalence. Then           and            
 

Theorem      says that if partial isometries   and   implement the Murray-von 

 their adjoints       are 

pairwise metrically equivalent operators. For a deeper and comprehensive theory about metric equivalence 

operators, see [1]. 

 

Theorem 3.13. If          then        . 

 

Proof. This follows from                    . 

The converse of Theorem      is not true in general. The orthogonal projections    
   
   
   

  and   

 
   
   
   

  have equal norm but                                                

 

Theorem 3.14. Two orthogonal projections   and   are unitarily equivalent if and only if they are Murray-von 

Neumann equivalent and             are Murray-von Neumann equivalent. 

 

Proof. Suppose       , for some unitary operator  . Put      and         . Then     
                            and similarly                . Thus   and 

    e Murray-von Neumann equivalent and             are Murray-von Neumann equivalent. Conversely 

suppose   and   are Murray-von Neumann equivalent and     and     are Murray-von Neumann 

equivalent. Then there exists partial isometries                   and                       
satisfying the above conditions. Now, let      . Direct calculation shows that   is unitary with       

and therefore            , which proves the claim. 

 

Proposition 3.6, Theorem      and Theorem      say that unitary equivalence of projections is stronger than 

Murray-von Neumann equivalence of projections. However, in finite dimensions they are equivalent. That is, 

they are equal modulo passing to matrix algebras. 
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Given a contraction       , both         and         are positive operators and hence have unique 

square roots. We define           
 

  and            
 

  and call them the defect operators of     e 

closures of their ranges                   and                      are called the defect spaces of  . The respective 

dimensions(ranks)    and     are called the defect indices or numbers of  . Equivalently, the defect numbers of 

a contraction operator       , can be defined as                                             and 

                                                . We note also that    can be characterized in terms of the 

adjoint operator   , namely,                  . In applications, the equation     , where   is invertible, 

is solvable if and only if   is orthogonal to          . So    is a measure of the number of "orthogonality" 

conditions ensuring the solvability of the equation     . Recall that                      Tx, 

some     . 
 

Since partial isometries are contractions, the defect numbers for projections and partial isometries are well-

defined. 

 

Proposition 3.15. Let   and   be orthogonal projections and suppose that       and      , for some 

partial isometry  . Then       and        

 

Proof. By definition we note that           
 

       
 

         
 

      and            
 

  

     
 

         
 

     

 

The following result shows that Murray-von Neumann equivalent projections have equal defect numbers. 

 

Proposition 3.16. Let   and   be projections acting on a finite dimensional Hilbert space  . Then       if 

and only if   and   are Murray-von Neumann equivalent. 

 

Recall that an operator   is a symmetry if          (i.e.,              ). 
 

Proposition 3.17. If        is a symmetry and        is a projection, then      is a partial isometry. 

 

Proof. The result follows from                   . 

 

Theorem 3.18. If   
     

  and     , then there exists a symmetry   such that      . 

 

 Proof. Suppose there exists a partial isometry    uch that       and      . By Theorem 3.1,       . 

Let               . Clearly     . Since        , by Theorem 3.1, we also have     
      ,          and       . A simple computation using this fact shows that          . 
Therefore         . Another calculation shows that      . This establishes the claim. 

 

Theorem      gives conditions under which Murray-von Neumann equivalence implies unitary equivalence. 

 

Remark 3.19 

 

We define the distance between two closed subspaces   an    of the Hilbert space   by           
  , where   and   are the orthogonal projections with ranges   and  , respectively. This function defines a 

metric on the set of all closed subsets of  . We can define       as follows 

 
                               

                           

                         

 

 
and 
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Theorem 3.20. Let   and   be orthogonal projections acting on a Hilbert space  . Then 

 

               
 

where   and   are as defined in Remark 3.19. 

 

Proof. see      , Theorem 4.33). 

 

With this definition, and for any two orthogonal projections   and   on a Hilbert space  , it is easy to see that 

         . Thus             . 

 

Theorem      ([8], Problem 130). If   and   are partial isometries such that         then 

                        
 

Corollary      ([8], Problem 57). If   and   are projections on a Hilbert space   such that         then 

                            and                                 . 

 

Proof. First, we note that                 and                . Thus             
                 . Put                . Then a simple computation shows that           
      . This means that   is normal and since        , we deduce that          is invertible 

(using the fact that       implies that     is invertible, for any bounded linear operator    and by 

Proposition       is invertible. Since                    and                     , the invertibility 

of   implies that                    and                     . This is equivalent to saying that 

                and                  , and hence have equal dimensions, respectively. 

 

Corollary 3.23. If   and   are projections such that         then there exists a unitary operator   such 

that       . 

 

Proof. The conclusion of Corollary      guarantees existence of such a unitary operator  . From Corollary 

                     is normal and invertible and if        is the polar decomposition of  , we 

have that     is invertible and   is unitary. Since   is normal, the operators       and   all commute. Also 

 

                                        
 

we deduce that          . Thus                                   
 

Therefore      , or equivalently,       . 

 

Example. The projections    

 

 

 

 
 

 

 

 

 
 

   

  and    
   
   
   

  are such that 

       
  

 
  . A simple calculation shows that        with    

 
 

  

 

  
 

 

  

 

  
 

   

  being unitary. 

Another calculation shows that         , with the partial isometry    

 
 

  
 

 
 

  
 

   

  implementing the 

equivalence. 
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Remark. The converse to Corollary      is not true in general. The following result gives a condition under 

which the converse holds. 

 

Corollary 3.24. Let   and   be projections on a Hilbert space  . Then         if and only if        
      and        , for some invertible operator  . 

 

Theorem 3.25. If          are orthogonal projections and if there exists an invertible operator   such that 

            
 

 
 then   

     
 . Proof. Let          and                  . Clearly,   

     

and 

 

 
                              

                                 

                                 

                                     

                             

     

 

By Proposition 2.11, the operator   is invertible. Thus, the partial isometry   in the polar decomposition of 

       is unitary and         . Clearly,         by Corollary 3.23. Therefore,            
             , where       is invertible and therefore the partial isometry   in the polar decomposition 

of            is unitary. A simple calculation shows that       . Therefore   and   are unitarily 

equivalent, and hence Murray-von Neumann equivalent, by Proposition 3.6. 

 

Theorem 3.25 shows that similar orthogonal projection operators are Murray-von Neumann equivalent. But it 

also says that there may be orthogonal projections which are not similar but are Murray-von Neumann 

equivalent. This evidently happens if                
 

 
. 

 

Theorem 3.26. Similar orthogonal projections   and   acting on a Hilbert space   are Murray-von Neumann 

equivalent. 

 

Proof. The proof follows immediately from the fact that similar normal operators are unitarily equivalent. The 

rest of the proof follows from Proposition 3.6. This result also follows from Theorem     . 

 

We conclude that for orthogonal projections acting on a Hilbert space   : 

 

Metric equivalence   Unitary equivalence   Similar   Murray-von N. equivalent 

 

Are there orthogonal projections in a Hilbert space  , which are not similar but are Murray-von Neumann 

equivalent? 

 

Corollary 3.27. Let   and   be orthogonal projections such that     and    . If   and   are Murray-von 

Neumann equivalent then they are unitarily equivalent. 

 

Proof. The result follows from Theorem     . 

 

Corollary 3.28. If   and   are orthogonal projections acting on a Hilbert space   then the following are 

equivalent.  

 

(a)                . 

(b)     . 

(c)      . 

(d)           for all    . 
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Proof. (a)     . Suppose                . Then            for all    . Thus        for all 

   . This is equivalent to     . 

(b)     . Since   and   are self-adjoint, if     , then we also have                     

(c)     . Suppose     . Then                         for all    . 

(d)    a). Suppose           for all    , but                . Then there exists           such 

that          . Let                      and           . By the Pythagorean Theorem,       
                    , a contradiction. Thus                . 

 

If   and   are orthogonal projections such that        , then     is a projection and        . If 

    is a non-trivial projection, then   and   need not be unitarily equivalent. 

 

Example 3.29 

 

Let    
   
   
   

  and    
   
   
   

 . Then         and        . Clearly these projections 

are not unitarily equivalent. This shows that the strict less than condition in Corollary      cannot be dropped. 

 

Corollary 3.30. If   and   are orthogonal projections acting on a Hilbert space   with                , 

then    . 

 

Proof. From Corollary 3.27,          . 

 

Theorem 3.31. Let   and   be orthogonal projections acting on a Hilbert space  . Then     is a projection 

if and only if                . 

 

Theorem 3.32. Let          be orthogonal projections. Then     and     are orthogonal projections 

projections if and only if                . 

 

Proof. The result follows from Corollaries 3.27,      and Theorem 3.31. 

 

Theorem 3.33. Let   be a finite dimensional Hilbert space and       . Let   and   be reducing 

subspaces for  , with                 and suppose that               and              , with 

     , where      and      are in     . Then    and    are unitarily equivalent if and only if 

  and   are Murray-von Neumann equivalent.  

 

3.2 Orbit of Murray-von Neumann equivalent projections 
 

Recall that for a projection    , we denote by    the central carrier of  . That is,    is the smallest 

projection   in the center of a von Neumann algebra   such that    . That is                      
                                . 
 

Theorem 3.34. Let   and   be projections. If    , then      . 

In Example 3.29,    . A simple calculation shows that      , with      
   
   
   

 . 

 

Theorem 3.35. Let          be orthogonal projections. If    , then    
     

  

 

Recall that for any two projections         , we let "    denote the Murray-von Neumann order on 

      
     

, the set of Murray-von Neumann equivalent projections. We write     if and only if 

  
     

   for a certain sub-projection      

 

Proposition 3.36.   induces a partial order on       
     

, the set of Murray-von Neumann equivalent 

projections. 
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Clearly for any two operators         , either     or    . This means that any two projections in 

     are comparable. That is the partial ordering   is a linear ordering. 

 

Theorem      (Murray-von Neumann Schröder- Bernstein). Let   and   be orthogonal projections on a 

Hilbert space  . If     and     then  
     

 . 
 

Theorem 3.38. Let   and   be orthogonal projections acting on a Hilbert space    Then 

 

(a)     if and only if              . 

(b)   
     

  if and only if              . 
 

Theorem 3.39. If   is a central projection in        , then     is a central projection in        . 

 

Proof. The proof that     is a projection is trivial. For all          , we have that             
           . This establishes the claim. 

 

Let        be an orthogonal projection. Let          be the set or orbit of projections which are Murray-

von Neumann equivalent to  . That is,                      
     

  . If   and   are both in 

        , then   
     

  and   
      

  and by symmetry,   
     

 . This leads to the following result.  

 

Theorem 3.40. Let          . Then any two elements of          are Murray-von Neumann equivalent. 

 

Corollary 3.41. Let          . If            and   
     

 , then            
 

Corollary      says that any element of         that is Murray-von Neumann equivalent to an element of 

         is itself an element of         . Consequently, for any two elements            , the sets 

         and          are either identical or disjoint. 

 

Corollary 3.42. Let            . If   
     

 , then                    
 

Corollary 3.43. Let            . If         , then                    . 

 

The sets in the collection                      are the Murray-von Neumann equivalence classes or sets 

of         under the relation  
     

. Thus         is the disjoint union of the Murray-von Neumann 

equivalence classes. No such Murrayvon Neumann equivalence class is empty, since           . The 

collection of equivalence classes under the equivalence relation  
     

 is the quotient of        with respect to 

 
     

, and we denote it by                      . 

 

If       , then   defines a linear ordering on                  
      which is order isomorphic to 

            if          or     if          . 

 

Example. If     , then            
  
  

     
  
  

     
  
  

   . 

 

Every idempotent operator   acting on a Hilbert space   has an associated involution defined by        . 
The following assertions follow easily from definition. 

 

Proposition 3.44. If   is an idempotent operator, then the associated operator         is an involution. 

 

Proposition 3.45. If   and   are unitarily equivalent projections, then their associated involutions    and    are 

unitarily equivalent. 

 

Proposition 3.46. Two involutions are similar if and only if their associated idempotents are similar. 

 

P
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Proposition 3.47. If   is an orthogonal projection (self-adjoint idempotent), then the associated involution 

       is unitary. Theorem 3.48. If   and   are Murray-von Neumann equivalent projections, then their 

associated involutions    and    are unitarily equivalent. 

 

4 Discussion and Conclusion 
 

In this paper we have managed to show, for the first time, that two orthogonal projections   and   acting on a 

Hilbert space   are Murray-von Neumann equivalent if and only if there exists a partial isometry        
such that       . 

 

For two orthogonal projections          with ranges   and  , respectively, the question of invertibility of 

the operator      s of great interest as it is connected with the question of when   is decomposable as a 

direct sum      , with the existence of an idempotent operator   satisfying the equations 
 

                               
 

In von Neumann algebras the notion of Murray-von Neumann equivalence is fundamental in the classification 

and structure theory. Projection operators are useful in vast areas of physics, especially in quantum theory, 

multi-body system dynamics, Markov Chains, singular difference and differential equations, numerical analysis 

and group theory. In ergodic theory, the orthogonal projections   and   could be taken to correspond to 

measurable subsets of a measure space in which a group is acting. 
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